MSci Meteorology and Oceanography


Attendance
Full Time
Award
Degree of Master of Sciences



UCAS Course Code
F790
A-Level typical
AAB (2017/8 entry) See All Requirements
Visit Us
This unique, four-year degree gives you the chance to learn how both the atmosphere and the oceans work and interact. No other UK university offers this subject combination, but the two disciplines are equally important in understanding the Earth's climate system and our impact upon it.

The course is taught jointly by our Environmental Sciences and Mathematics departments, both of which are highly ranked for research - 1st for impact and 7th for quality in the UK respectively - so you'll benefit from our academics' diverse and world-class expertise.

The degree incorporates extensive field courses that will expose you to advanced scientific instruments, compulsory modules that lay the scientific foundations for understanding the environment, and a wide range of optional modules that enable you to focus on different themes. You'll also study advanced, Masters-level modules in your final year and complete an in-depth research project.

Overview

The University of East Anglia is currently the only University in the UK where it is possible to study these two specialist subjects side by side in a combined degree format. This exciting four-year programme offers an integrated approach to studying the Earth’s oceans, atmosphere, their interactions, and external influences on them.

The course is designed to provide you with an insight into how the atmosphere and oceans work and interact. This approach gives you a detailed understanding of the Earth's climate system, alongside the impact of human society on the atmospheric and oceanic systems. The Meteorology and Oceanography course also embraces a range of disciplines, from climatology to theoretical seismology and volcanology.

Taught jointly by the School of Environmental Sciences and the School of Mathematics, and in collaboration with the School of Computing Sciences, this degree programme enables you to develop a critical awareness of issues at the frontier of research, along with a comprehensive understanding of research methods and their limitations. You will gain the qualities of self-direction and originality in applying knowledge, solving problems and conducting research.

Many of our Meteorology and Oceanography students have gained valuable experience conducting the fieldwork for their final year project. Graduates of the programme have gone on to work for the British Antarctic Survey, the UK Meteorological Office, WeatherQuest and a variety of universities.

Field Course Options

Field courses and practical classes are an integral part of training our meteorology and oceanography students. You will be introduced to the problems of studying these unique aspects of the planet and learn a variety of practical techniques using specialist equipment through the field courses available.

Course Structure

The first three years of the programme will follow the same profile as the BSc Meteorology and Oceanography, with the exclusion of the third year research project. In the fourth and final year you will study a range of Master’s level modules, as well as undertaking a substantial piece of independent research in a topic that matches your interests.

Year 1
A series of compulsory modules introduce you to the general scientific principles governing our environment, including Global Environmental Challenges and Understanding the Dynamic Planet. Multi-disciplinary modules from the wider Faculty of Science allow you to develop the essential analytical skills you will need during further years – including Maths for Scientists and Field Skills.

Year 2
As the course progresses you will undertake a range of compulsory scientific modules, including Meteorology and Waves, and Tides and Shallow Water Processes. Mathematics for Scientists continues to develop your capacity for mathematical theory. You will also have the option to take a Meteorological Field Course in the Lake District.

Year 3

During your third year of study you will undertake an individual research project, allowing you to investigate a specialist area in professional depth. You also choose from a range of modules relevant to the oceans and/or atmosphere, allowing you to advance your physical/dynamical understanding of the climate system and its variability, and/or to develop skills in atmospheric and/or marine chemistry.

You will also undertake a free choice module from any school across the university, subject to permission. This gives you the opportunity to enhance your scientific skills with business acumen or take a foreign language to improve your international employability.

Year 4
During your final year you will undertake a substantial piece of independent research in a topic that matches your interests. You will also choose from a range of optional advanced modules including Wind Energy Engineering; Wave, Tidal and Hydro Energy Engineering; The Carbon Cycle and Climate Change; Dynamical Oceanography.

Assessment

A variety of assessment methods are used in different modules, ranging from 100% coursework to 100% examination. Coursework assessment methods include essays, written discussions, class tests, problem sheets, laboratory reports, field exercises, field notebooks and seminar presentations. In most modules the assessment is weighted 67% examination, 33% coursework. Skills based modules and field modules are assessed by 100% coursework.

Course Modules

Students must study the following modules for 100 credits:

Name Code Credits

GLOBAL ENVIRONMENTAL CHALLENGES

What are the most pressing environmental challenges facing the world today? How do we understand these problems through cutting-edge environmental science research? What are the possibilities for building sustainable solutions to address them in policy and society? In this module you will tackle these questions by taking an interdisciplinary approach to consider challenges relating to climate change, biodiversity, water resources, natural hazards, and technological risks. In doing so you will gain an insight into environmental science research 'in action' and develop essential academic study skills needed to explore these issues. Please note that ENV students, BIO Ecology students, NAT SCI students and SCI Foundation Year students can request a place on this module, however priority will be given to ENV students. Please note that non-ENV students wishing to select this module must obtain a signature from their advisor confirming that he/she will agree to mark the independent essay component of the module assessment in the spring semester (this must be done within the first two weeks of the autumn semester by sending an email to the module organiser (Dr. Mark Chapman) copied to the HUB at: env_ug.hub@uea.ac.uk ).

ENV-4001A

20

MATHEMATICS FOR SCIENTISTS A

THIS MODULE CANNOT BE TAKEN WITH ENV-4014Y OR ENV-4013Y. This module is designed for students with maths A2 level (grade C or above) or IB SL (grade 4 or above). It is also for students transferring from the SCI Foundation year who have taken MTHB0002B Basic Mathematics II. It covers differentiation, integration, vectors, partial differentiation, ordinary differential equations, further integrals, power series expansions, complex numbers and statistical methods. In addition to the theoretical background there is an emphasis on applied examples. Previous knowledge of calculus is assumed. This module is the first in a series of three maths modules for students across the Faculty of Science that provide a solid undergraduate mathematical training. The follow-on modules are Mathematics for Scientists B and C.

ENV-4015Y

20

PROBABILITY AND MECHANICS

In taking this module you cannot take MTHA4001Y or take MTHA4004Y. While taking this module you must take or have taken MTHA4005Y or MTHB4006Y or ENV-4002Y. Stuedntes are expected to have attained a grade B or above in A-level maths, or equivalent. (a) Probability as a measurement of uncertainty, statistical experiments and Bayes' theorem. Discrete and continuous distributions. Expectation. Applications of probability. (b) The second part of the module is about Mechanics. It includes discussion of Newton's laws of motion, particle dynamics, orbits, and conservation laws.

MTHB4007B

20

RESEARCH AND FIELD SKILLS

This module year long module introduces a range of transferable skills, tools and data resources that are widely used in research across the Environmental Sciences. The aim is to provide a broad understanding of the research process by undertaking different activities that involve i) formulating research questions, ii) collecting data using appropriate sources and techniques, iii) collating and evaluating information and iv) presenting results. The module will include the use of digital mapping technologies (such as geographical information systems GIS) and a 6 day residential field course held during the Easter Break.

ENV-4004Y

20

UNDERSTANDING THE DYNAMIC PLANET

Understanding of natural systems is underpinned by physical laws and processes. This module explores energy, mechanics, physical properties of Earth materials and their relevance to environmental science using examples from across the Earth's differing systems. The formation, subsequent evolution and current state of our planet are considered through its structure and behaviour#from the planetary interior to the dynamic surface and into the atmosphere. Plate Tectonics is studied to explain Earth's physiographic features#such as mountain belts and volcanoes#and how the processes of erosion and deposition modify them. The distribution of land masses is tied to global patterns of rock, ice and soil distribution and to atmospheric and ocean circulation. We also explore geological time#the 4.6 billion year record of changing conditions on the planet and introduce geological materials, resources and hazards.

ENV-4005A

20

Students will select 20 credits from the following modules:

Students will be assigned to 20 credits from the following units. Assignments will be made according to previous Chemistry qualifications.

Name Code Credits

PHYSICAL AND CHEMICAL PROCESSES IN THE EARTH'S SYSTEM I

The habitability of planet Earth depends on the physical and chemical systems on the planet which control everything from the weather and clim ate to the growth of all living organisms. This module aims to introduce you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret these systems. The module will lead many of you on to second and third year courses (and beyond) studying these systems in more detail, but even for those of you who choose to study other aspects of environmental sciences a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The course has two distinct components, one on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) and one on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). During the course of the module the teachers will also emphasise the inter-relationships between these two sections This course is taught in two variants: In 4007B (described here) we will provide a Basic Chemistry introduction for those students who have little or no background in chemistry before coming to UEA (see pre-requisites). If you have previous experience of chemistry you will take ENV 4008B. This course will run throughout semester 2 involving a mixture of lectures, laboratory practical classes, workshops and a half day field trip.

ENV-4007B

20

PHYSICAL AND CHEMICAL PROCESSES IN THE EARTH'S SYSTEM II

The habitability of planet Earth depends on the physical and chemical systems on the planet which control everything from the weather and climate to the growth of all living organisms. This module aims to introduce you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret these systems. The module will lead many of you on to second and third year courses (and beyond) studying these systems in more detail, but even for those of you who choose to study other aspects of environmental sciences a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The course has two distinct components, one on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) and one on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). During the course of the module the teachers will also emphasise the inter-relationships between these two sections This course is taught in two variants. The version of the course described here (4008B) is for students with previous experience of chemistry. Students with no previous experience of chemistry will take ENV 4007B (see pre-requisites). This course will run throughout semester 2 involving a mixture of lectures, laboratory practical classes, workshops and a half day field trip.

ENV-4008B

20

Students must study the following modules for 100 credits:

Name Code Credits

MATHEMATICS FOR SCIENTISTS B

This module is the second in a series of three mathematical modules for students across the Faculty of Science. It covers vector calculus (used in the study of vector fields in subjects such as fluid dynamics and electromagnetism), time series and spectral analysis (a highly adaptable and useful mathematical technique in many science fields, including data analysis), and fluid dynamics (which has applications to the circulation of the atmosphere, ocean, interior of the Earth, chemical engineering, and biology). There is a continuing emphasis on applied examples.

ENV-5006A

20

MATHEMATICS FOR SCIENTISTS C

This module is the third in a series of three mathematical units for students across the Faculty of Science. It covers matrix algebra and numerical methods (with applications to many multi-variable problems in science), second order partial differential equations (which govern the behaviour of diffusive, advective and wave-like systems), and solid mechanics (applications in geophysics, glaciology, and material science). There is a continuing emphasis on applied examples, and the use of numerical computing software (Matlab) is extended with a dedicated programming component. This module is taught by mathematicians with considerable expertise in the use of mathematics in the natural/environmental sciences and is largely designed to equip students with the tools necessary for advanced second and third level modules, particularly those in the physical sciences. Emphasis is placed on problem solving and there are three lectures a week accompanied by one seminar which focuses on the discussion of relevant problem sheets.

ENV-5007B

20

METEOROLOGY I

This module is designed to give a general introduction to meteorology, concentrating on the physical processed in the atmosphere and how these influence our weather. The module contains both descriptive and mathematical treatments of Radiation Balance, Cloud Physics, Thermodynamics and Dynamics and the assessment is designed to allow those with either mathematical or descriptive abilities to do well; however a reasonable mathematical competence is essential. TEACHING AND LEARNING Practical session will provide opportunities for individual and group-based work in which problem sheets and data analysis exercises are tackled. Lectures will provide the forum for introduction of theoretical material and also for following up and summarising the key points emanating from previous practical sessions. Lecturers will also ensure that attention is drawn, as appropriate, to links between theory and 'current weather', often in the form of references to online information resources. The course Blackboard site will provide opportunities for students to assess their own progress through informal formative assessment material. # The Structure of the Atmosphere # Short and long wave radiation in the atmosphere # Thermal equilibrium of the Earth atmosphere system # Laws of thermodynamics applied to the atmosphere # Atmospheric Stability # Atmospheric Dynamics # Atmospheric momentum balance # Meteorological surface observations and plotting codes # Cloud physics CAREER PROSPECTS Students regularly go on to careers in the Met Office, in meteorological consultancy and in a number of other research organisations in the UK and abroad, either directly or after taking a higher degree. Meteorology interfaces with many other disciplines n the environmental sciences (eg oceanography, hydrology, energy and epidemiology) and impacts upon most sectors of the economy. While graduates regularly move directly into weather forecasting and analysis jobs, a career in meteorological research would often first require a higher degree. This module is designed to give a general introduction to meteorology, concentrating on the physical processes in the atmosphere and how these influence our weather. The module contains both descriptive and mathematical treatments of Radiation Balance, Cloud Physics, Thermodynamics and Dynamics and the assessment is designed to allow those with either mathematical or descriptive abilities to do well; however a reasonable mathematical competence is essential, including a basic understanding of differentiation and integration.

ENV-5008A

20

OCEAN CIRCULATION

This module gives you an understanding of the physical processes occurring in the basin-scale ocean environment. We will introduce and discuss large scale global ocean circulation, including gyres, boundary currents and the overturning circulation. Major themes include the interaction between ocean and atmosphere, and the forces which drive ocean circulation. You should be familiar with partial differentiation, integration, handling equations and using calculators. ENV-5017B is a natural follow-on module and builds on some of the concepts introduced here. We strongly recommend that you also gain oceanographic fieldwork experience by taking the 20-credit biennial Marine Sciences fieldcourse.

ENV-5016A

20

SHELF SEA DYNAMICS AND COASTAL PROCESSES

The shallow shelf seas that surround the continents are the oceans that we most interact with. They contribute a disproportionate amount to global marine primary production and CO2 drawdown into the ocean, and are important economically through commercial fisheries, offshore oil and gas exploration, and renewable energy developments (e.g. offshore wind farms). This module explores the physical processes that occur in shelf seas and coastal waters, their effect on biological, chemical and sedimentary processes, and how they can be harnessed to generate renewable energy. Career development: New skills developed during this module will support careers in the offshore oil and gas industry, renewable energy industry, environmental consultancy, government laboratories (e.g. Cefas) and academia. Mathematical background: The level of mathematical ability required to take this module is similar to Ocean Circulation and Meteorology I. You should be familiar with radians, rearranging equations and plotting functions.

ENV-5017B

20

Students will select 20 credits from the following modules:

Students must also submit a request to the School for a place on fieldcourses.

Name Code Credits

METEOROLOGY II

This module will build upon material introduced in ENV-5008A (Meteorology I) covering topics such as synoptic meteorology, micro-scale processes, the General Circulation and weather forecasting. Practical sessions, some computer based, will provide opportunities for individual- and group-based work in which problem sheets, simulations and case study exercises are tackled, coupled with experiential sessions in forecasting and broadcast meteorology. Lectures will provide the forum for introduction of theoretical material and also for following up and summarising the key points emanating from previous practical sessions. Lectures will also ensure that attention is drawn, as appropriate, to links between theory and 'current weather', often in the form of references to online information resources. A non-compulsory programme of complementary monthly evening seminars is also available through the Royal Meteorological Society's East Anglian Centre, based at UEA, including talks by employers.

ENV-5009B

20

METEOROLOGY II WITH FIELDCOURSE

This module will build upon material covered in ENV-5008A (Meteorology I) by covering topics such as synoptic meteorology, micro-scale processes, the General Circulation and weather forecasting. The module also includes a week long Easter vacation residential fieldcourse, based in the Lake District, involving students in designing scientific experiments to quantify the effects of micro- and synoptic-scale weather and climate processes, focusing on lake, forest and mountain environments. RESIDENTIAL FIELD COURSE The additional Field Course runs during the first seven days of the Easter Vacation based at Hawkshead Youth Hostel in Cumbria. There will be a charge for attending this field course. The charge is heavily subsidized by the School, but students enrolling must understand that they will commit to paying a sum to cover attendance. As the details of many modules and field courses have changed recently the following figures should be viewed as ball-park estimates only. If you would like firmer data please consult the module organizer closer to the field course. The cost to the student will be in the order of GBP160.

ENV-5010K

20

Students must study the following modules for 40 credits:

Name Code Credits

Students will select 0 - 60 credits from the following modules:

Name Code Credits

CLIMATE SYSTEMS

This module is about understanding the processes that determine why the Earth's climate (defined, for example, as its temperature and moisture distribution) looks like it does, what are the major circulation patterns and climate zones around the world and how do they arise, how and why the climate can change in time over different timescales, and how we can use this knowledge to understand the climate systems of other planets. This course is aimed at those students who wish to further their knowledge of climate and climatology, and also want a base for any future study of climate change, such as students doing the Meteorology/Oceanography or the Environmental Geography and Climate Change degrees. Note that Meteorology I (ENV 5008A) is a prerequisite for this module. After completing this module, students should be able to: # Understand the processes that control the energy balance of the atmosphere (following on from ENV-5008A) # Explain the temperature and moisture structure of the atmosphere # Understand the science underlying regional and global circulations and climatic zones (complementing level M/6-level Global Circulation and Dynamical Oceanography, feeding into M-level Physical Science Basis of Climate Change) # Identify how and why climate changes on a variety of timescales (feeding into M-level Physical Science Basis of Climate Change, M-level Geoengineering) # Use this knowledge to understand other climate.

ENV-6025B

20

MODELLING ENVIRONMENTAL PROCESSES

The aim of the module is to show how environmental problems may be solved from the initial problem, to mathematical formulation and numerical solution. Problems will be described conceptually, then defined mathematically, then solved numerically via computer programming. The module consists of lectures on numerical methods and computing practicals (using Matlab); the practicals being designed to illustrate the solution of problems using the methods covered in lectures. The module will guide students through the solution of a model of an environmental process of their own choosing. The problem will be discussed and placed into context through a project proposal, instead of an essay, and then solved and written up in a project report. The skills developed in this module are highly valued by prospective employers of students wishing to carry on into further studies or in professional employment. TEACHING AND LEARNING The aim of this course is to show how environmental problems may be solved from the initial problem, to mathematical formulation and numerical solution. There is a focus on examples within meteorology, oceanography and also the solid earth. The course consists of lectures on numerical methods, taught computing practicals and an independent project. The taught practicals illustrate the solution of a broad range of environmental problems using the methods covered in lectures. The module will guide students through an individual project which will develop a simple numerical model of an environmental process of their own choosing. The problem will be discussed and placed into context through a proposal, and then solved and written up in a project report. The first 8 weeks of the module are taught lectures and practicals, while the last 4 weeks is devoted to completing the independent project. The computing practicals are run in Matlab and a brief review of programming in Matlab is included in the module. Previous programming experience in any language will be extremely useful. The skills developed in this unit are highly valued by prospective employers of students wishing to carry on into further studies or in professional employment. COURSE CONTENT: Lectures, computing practicals and an independent project CAREER PROSPECTS: Numerical modelling and computer programming are commonly requested skills for science graduates, especially those looking towards further study or to stay in science.

ENV-6004A

20

THE CARBON CYCLE AND CLIMATE CHANGE

What do you know about the drivers of climate change? Carbon dioxide (CO2) is the greenhouse gas that has, by far, the greatest impact on climate change, but how carbon cycles through the Earth is complex and not fully understood. Predicting future climate or defining 'dangerous' climate change is challenging, in large part because of this complexity. In this module you will learn about the atmosphere, ocean and land components of the carbon cycle. We cover urgent global issues such as ocean acidification and how to get off our fossil fuel 'addiction'. The complexity of the carbon cycle leads to a truly inter-disciplinary module, incorporating elements of chemistry, ecology, physics, mathematics and geography. We also consider several human dimensions such as: how to 'decarbonise' the UK; geoengineering the climate; how to deal with climate denialists; how to verify greenhouse gas emissions; and the policy relevance of the carbon cycle. The understanding of the carbon cycle gained from this module is an important foundation for all climate change studies. Emphasis is given to the most recent, cutting-edge research in the field.

ENV-6008A

20

Students will select 0 - 40 credits from the following modules:

Name Code Credits

BIOLOGICAL OCEANOGRAPHY AND MARINE ECOLOGY

This module examines the microbial processes that underpin our dependence on the marine environment for 'services' such as climate modulation and nutrient regeneration. The module will cover the evolution, biodiversity and molecular ecology of bacteria, diatoms, coccolithophores and nitrogen fixers, and the physiology and distribution of zooplankton. Example ecosystems such as the Antarctic, mid ocean gyres and Eastern Boundary Upwelling Systems will be studied in detail and predictions of the impact of environmental change (increasing temperature, decreasing pH, decreasing oxygen, and changes in nutrient supply) on marine ecosystem dynamics will be examined. Biological oceanographic methods will be critically evaluated. The module will include a reading week in week 7 and employability visits to the Centre for the Environment, Fisheries and Aquaculture Science (CEFAS) and British Antarctic Survey (BAS).

ENV-6005A

20

PALAEOCLIMATOLOGY

This module examines the geological evidence for major climatic change through the Quaternary Period (the last 2.6 million years) and the long-term evolution of climate through the Cenozoic Era (the last 65 million years). The key mechanisms behind these major global environmental changes are explored using a wide range of approaches - stable isotope geochemistry, sedimentology, radioisotopes, palaeoecology, and organic geochemistry. We will focus on selected topics that relate to the extent, timing and causes of past variations of climate as expressed through changes in the geological record and the fossil record. Taught classes will largely draw on information obtained from marine sediments, ice cores, and terrestrial and lacustrine biological and sedimentological archives. Topics to be covered include: # Past climate change and causes of change over geological timescales # Driving mechanisms of Quaternary climate change# # High frequency climate variability# # Stratigraphy and geochronology # Palaeotemperature reconstruction# # Ice sheet variability and climate linkages# # Sea level change over geological timescales # Palaeoclimate modelling The module provides an essential geological perspective on the topic of climate change and the interpretation of past environments for those interested from either an academic or consultancy viewpoint. The interdisciplinary nature of this module means that it provides valuable skills for those who have interests in pursuing careers in oceanography, climatology, sedimentology, hydrogeology, archaeology and environmental management/consultancy.

ENV-6017B

20

Students will select 0 - 40 credits from the following modules:

Name Code Credits

DYNAMICAL OCEANOGRAPHY

This level 6 module covers modelling the large scale ocean circulation and structure, internal waves and coastal flows. The mathematical modelling of the oceans in this module provides a demonstration of how the techniques developed in second year modules on fluid dynamics and differential equations can be used to explain some interesting phenomena in the real physical world. The module begins with a discussion of the effects of rotation in fluid flows. The dynamics of large scale ocean circulation is discussed including the development of ocean gyres and strong western boundary currents. The thermal structure associated with these flows is examined. These large scale currents are responsible for the variation in climate between land on the eastern and western side of major ocean basins. The dynamics of equatorial waves are examined. Such waves are intimately linked with the El Nino phenomena which affects the climate throughout the globe.

MTHE6007B

20

MODERN METHODS IN AIR POLLUTION SCIENCE

Air pollution is one of the most significant environmental problems of the 21st century, with serious implications for human health and mortality, ecosystem and infrastructure damage, and climate change. This module will look at cutting-edge, state-of-the-art methods used to measure and monitor air pollutants at urban, regional and global scales, and how these measurements are interpreted using a variety of numerical models and graphical tools.

ENV-6020B

20

Students will select 0 - 20 credits from the following modules:

PLEASE NOTE: Students must check that the module chosen from this range does not have a timetable clash with modules already selected, noting that no more than one module with the same timetable slot e.g. EE, can be taken in one semester. Students must submit a request to the School for a place on fieldcourses.

Name Code Credits

AQUATIC ECOLOGY

An analysis of how chemical, physical and biological influences shape the biological communities of rivers, lakes and estuaries in temperate and tropical regions. There is an important practical component to this module that includes laboratory work and three field visits. The first piece of course work involves statistical analysis of class data. The module can be taken alongside hydrology or geochemical modules, it fits well with other ecology modules and can fit well with modules in development studies. Pre-requisite requirements are: An A-level in a biological subject, a biologically biased access course or any 1st year ecology module in ENV or BIO. Students must have a background in basic statistical analysis of data. Lectures will show how the chemical and physical features of freshwaters influence their biological communities. Students may attend video screenings that complement lectures with examples of aquatic habitats in the tropics. To do well in this module, students need to show that they can use primary literature to illustrate or contradict ideas introduced in lectures: There will be one formal session that shows how to do this. Practical work is an important part of this Module and is an opportunity to develop skills in taxonomy mainly using microscopes, chemical analysis of freshwaters, field observation, working in small groups, mini-lecture presentation, writing a research proposal and statistical analysis of ecological data. If interested in a career in ecology, the usual route is via a higher degree (Masters or PhD), for which a first or 2:1 is needed. This might lead into research or management work, either in an academically orientated environment or in industry. An alternative path is via casual or voluntary work leading ultimately into conservation or management, but bear in mind that many committed and keen people follow the same route and competition for permanent and paid jobs can be intense. There are also opportunities to enter relevant employment directly after graduation. The Environment Agency, which is responsible for the management, monitoring and legal regulation of many aspects of freshwater, estuaries and coastal waters, is a potential employer. Consulting engineers and many multinational companies have environmental departments that tackle aquatic projects. For this type of work, students might combine ecological modules with management options, or with more physical sciences such as soils, hydrology, hydrogeology, water resources, oceanography and environmental chemistry. Careers in international development on the natural resources side may also benefit from a background in freshwater science.

ENV-5001A

20

ASTROPHYSICS

This 20 credit module gives an overview of astrophysics through lectures and workshops. Assessment will involve some coursework and a coursetest. The module assumes previous study of either A level physics or an equivalent course. Topics covered will include some history of astrophysics, radiation, matter, gravitation, astrophysical measurements, spectroscopy, stars and some aspects of cosmology. Some of these topics will be taken to a more advanced level. The more advanced topics will include workshop examples and course test questions at level 5 standard.

NAT-5001A

20

CATCHMENT WATER RESOURCES

This module will adopt an integrated approach to studying surface water and groundwater resources in river basins to enable students to analyse aspects of land management that affect catchment water resources and ecosystems.

ENV-6018B

20

CLIMATE CHANGE: SCIENCE AND POLICY

This module develops skills and understanding in the integrated analysis of global climate change, using perspectives from both the natural sciences and the social sciences. It offers a historical perspective on how climate has influenced society, on how global climate change has developed as a scientific object of enquiry, and on the difficulties and controversies over policies and politics on this issue, culminating in the December 2015 Paris Agreement. The course gives grounding in the basics of climate change science, impacts, adaptation, mitigation and their influence on and by policy decisions. Finally, it considers what will be required to meet the goal of the Paris Agreement to limit global warming to well below 2 #C above pre-industrial levels.

ENV-5003A

20

ENERGY AND PEOPLE

This module will introduce students to a range of social science perspectives on the inter-relationships between energy and people. The module begins by tracing the history and development of energy intensive societies and everyday lives as a means of understanding how energy has emerged as a key sustainability problem. The second part of the module then introduces some theories of social and technical change and uses these to critically analyse a range of people-based solutions to energy problems - including behaviour change initiatives, domestic energy efficiency technologies, and community-scale renewables - that are currently being tried and tested around the world. TEACHING AND LEARNING The module is taught through a combination of lectures and seminars involving group projects, peer discussions, practical exercises and student-led learning. The lectures (2 per week) will introduce students to some core theoretical ideas about the relationships between energy and people, as well as examining a series of people-based solutions to energy problems that have been attempted around the world. The seminar sessions (1 per week) will give students the opportunity to engage with the lecture content in more depth through a range of exercises designed to promote discussion with both course lecturers and peers. Essential readings will be identified for each lecture. To do well in the module students will need to demonstrate that they have engaged extensively with the literature in this area, particularly regarding the 'real world' implications of theoretical ideas and debates. CAREER PROSPECTS Contemporary energy problems are a key concern of central and local government policy, business activities, charity and community work and wider public debates. A key reason why existing solutions to these problems either fail or are not as effective as at first assumed, is that they are often based on a poor understanding of how people use and engage with energy in the course of their everyday lives. Improving students' understanding of the relationships between energy and people and providing them with the intellectual tools necessarily to critically assess energy problems and potential solutions will therefore give them with a significant advantage in this growing job market. In addition to enhancing employability in the specific area of energy, this module will also provide students with a range of key transferable skills that will help them secure gainful employment on completion of their undergraduate degree. These include: developing analytical and critical thinking skills; understanding how to work effectively in teams; advocacy and negotiation skills; developing creative approaches to presentation; and presenting work to different audiences.

ENV-6026B

20

ENVIRONMENTAL ANALYTICAL CHEMISTRY

This module is designed to teach skills necessary for the acquisition of good quality chemical data in environmental systems, and in the interpretation of this data. The module will focus on the collection of environmental samples for chemical analysis, methods of chemical analysis and the analytical and mathematical techniques used for data quality control. There will be a large component of practical work. This module will be particularly relevant for those wishing to do a chemistry-related project later in their degree. TEACHING AND LEARNING The module is structured around practical classes which will focus on the planning and implementation of field sampling, the preparation, storage and chemical analysis of environmental samples and the subsequent interpretation of the data acquired. Lectures will be used to provide supporting information for this exercise and more general information on broader aspects of analytical chemistry not covered in the practical classes. During the first half of the module, practical work will be based around analysis of samples collected by the class from UEA Broad and the River Yare. The second half of the module will be an independent study (mini-project) exercise, in which small groups will conduct more detailed investigations of the chemistry of the natural water bodies around UEA campus. There will be weekly non-assessed feedback on laboratory results during the module and a feed-forward formative assessment associated with mini-project topic selection. COURSE CONTENT: The module will cover field sampling strategies and techniques for preparing and storing chemical samples. There will be a strong focus on laboratory chemical analysis and on the mathematical manipulation of raw laboratory results, including quality control of data and critical comparison of results obtained using different methods. Interpretation of chemical data in its environmental context will also be covered. CAREER PROSPECTS The skills taught in this module have direct relevance to careers involving chemical analysis, with potential employers including the Environment Agency, environmental consultancies and research organizations (including postgraduate degree programmes). The broader skills associated with the use of critical analysis and independent and group work are widely valued in a wide range of professions.

ENV-5027B

20

ENVIRONMENTAL POLITICS AND POLICY MAKING

The most significant obstacles to problem solving are often political, not scientific or technological. This module examines the theoretical and empirical development of contemporary environmental politics. It is structured to analyse these issues from different theoretical perspectives, particularly theories of power and public policy making. The module is focused on dynamic examples of environmental politics and policy making at UK, EU and international levels. The module encourages and supports student-led learning by enabling students to develop their own theoretical interpretations of real world examples of politics. These are explored in seminar presentations and in an extended (4000 word) case study essay. The module assumes no prior knowledge of politics/social sciences.

ENV-5002B

20

FLUID DYNAMICS - THEORY AND COMPUTATION

(a) Hydrostatics, compressibility. Kinematics: velocity, particle path, streamlines. Continuity, incompressibility, streamtubes. Dynamics: Material derivative, Euler's equations, vorticity and irrotational flows. Velocity potential and streamfunction. Bernoulli's equation for unsteady flow. Circulation: Kelvin's Theorem, Helmholtz's theorems. Basic water waves. (b) Computational methods for fluid dynamics; Euler's method and Runge-Kutta methods and their use for computing particle paths and streamlines in a variety of two-dimensional and three-dimensional flows; numerical computation and flow visualisation using Matlab; convergence, consistency and stability of numerical integration methods for ODEs. (c) Theory of Irrotational and Incompressible Flows: velocity potential, Laplace's Equation, sources and vortices, complex potential. Force on a body and the Blasius theorem. Method of images and conformal mappings.

MTHA5002Y

20

GEOPHYSICAL HAZARDS

Geophysical hazards such as earthquakes, volcanic eruptions, tsunamis and landslides have significant environmental and societal impacts. This module focuses on the physical basis and analysis of each hazard, their global range of occurrence and their local and global impact. The module addresses matters such as hazard monitoring, modelling and assessment. The module considers approaches towards risk mitigation and the reduction of vulnerability (individual and societal), with an emphasis on their practical implementation. Scenarios and probabilities of mega-disasters are also investigated. All the teaching faculty involved have practical experience of supplying professional advice on these hazards (and related risks) in addition to their own research involvement. A basic knowledge of physical science and of mathematics is assumed e.g. use of logs, exponentials, powers, cosines, rearrangement of equations.

ENV-6001B

20

HYDROLOGY AND HYDROGEOLOGY

Hydrology and hydrogeology are Earth Science subjects concerned with the assessment of the natural distribution of water in time and space and the evaluation of human impacts on the distribution and quality of water. Knowledge of Hydrology and Hydrogeology is fundamental to the management of freshwater resources for the benefits of drinking water supply, food production and aquatic habitats. This module provides an introduction to geological controls on groundwater occurrence, aquifer characteristics (porosity and permeability), basic principles of groundwater flow, basis hydrochemistry, an introduction to catchment hydrology, hydrological data collection and analysis, runoff generation processes and the principles of rainfall-runoff and flood modelling. Practical classes develop analytical skills in solving hydrogeological and hydrological problems as well as field skills in pumping test analysis and stream gauging. A field excursion to the River Thurne catchment in Norfolk is also offered in this module. The module aims to equip students with the basic skills required to pursue careers in water resources engineering and management.equivalent mathematical skills. For example, an ability to work with common mathematical operations is essential such as the simple rearrangement of equations, and the ability to convert between varying units of length and volume. Basic differential equations will be presented for the description of groundwater flow.

ENV-5021A

20

LOW CARBON ENERGY

This module will focus on the decarbonisation of energy supply and demand in a carbon constrained world. It will examine the role of energy efficiency and low carbon energy technologies, such as wind energy, solar energy, hydrogen and fuel cells, taking into consideration important current issues and sectors for application. This knowledge is used to support an analysis of future energy supply and demand that includes management, policy and technical aspects. This version of the module is assessed by formative assessment and coursework. This module replaces ENV-2A84. TEACHING AND LEARNING This module not only provides the framework for learning the key technical and management aspects of low carbon energy but also provides students with the opportunity to explore the future of energy provision in greater depth in the practical sessions. These include an energy tour, debates and smaller seminar group discussions on the practical applications of low carbon energy technologies and energy efficiency and the management of future energy demand. They will provide students with the opportunity to share their knowledge and opinions in this most important field. Students will be expected to supplement the lectures and other learning activities by undertaking self-directed reading of text books, the research literature and policy documents. COURSE CONTENT # Importance of low carbon energy in terms of climate change, resource limits, fuel poverty and energy security # Current energy use and trends # How energy is produced, distributed and managed in the UK # Economic analysis of low carbon technologies # Low carbon energy technologies: biomass, wind, solar, hydro, wave, tidal, etc. # UK sectoral energy management: domestic, transport and business # Hydrogen energy and fuel cells CAREER PROSPECTS Energy and carbon management, renewable energy development, energy supply industry, energy policy development, energy efficiency consultancy, sustainable transportation development.

ENV-5022B

20

MARINE BIOGEOCHEMISTRY

Life on Earth began in the oceans and the oceans continue to have a major influence on global ecosystems and climate. The chemical composition of seawater is fundamental to the existence of life in the oceans - it is the life support system on which marine productivity is based. Investigating the distribution of nutrients in the ocean allows us to understand the processes that control marine productivity and its impact on global climate, as well as the effect of anthropogenic over-supply of nutrients (eutrophication) on the natural system. Phytoplankton growth in the ocean produces gases that can influence atmospheric composition and climate. Anthropogenic emissions of CO2 to the atmosphere directly affect the marine carbon cycle and cause Ocean Acidification, which threatens to cause considerable harm to marine ecosystems. Direct intervention in the chemical composition of the ocean has been proposed by some as potential geo-engineering solutions to help mitigate the effects of global climate change. This module explores all of these major issues and demonstrates the central role that the oceans play in global biogeochemical cycles and the Earth System.

ENV-5019A

20

MARINE SCIENCES FIELDCOURSE

This 11 day 20 credit field course studies physical, chemical and biological coastal oceanographic processes and will probably take place in June. The course includes lectures and practical experience of oceanographic instrumentation, chartwork, numerical analysis of data using matlab and a poster presentation at ENV. The second week of the course will take place in Oban, using the oceanographic research ships and laboratory facilities of the Dunstaffnage Marine Laboratory http://www.sams.ac.uk. The course has no pre- or co-requisites, however it will be of particular relevance to those who have studying ENV-5016A Ocean Circulation, ENV-5019A Chemical Oceanography and ENV-6055A Biological Oceanography and Marine Ecology. PLEASE NOTE THAT YOU CAN ONLY ENROL ONTO THIS MODULE VIA AN APPLICATION FORM FROM THE SCHOOL AND NOT VIA THE STANDARD MODULE ENROLMENT PROCESS. ALSO THE MODULE RUNS IN THE SUMMER PRIOR TO THE START OF THE ACADEMIC YEAR.

ENV-5020K

20

NATURAL RESOURCES AND ENVIRONMENTAL ECONOMICS

Have you ever wondered why human economic activity seems to be so bad for the environment? Does it have to be like that? Is it possible for human beings to enjoy high standards of living and a high quality environment? Through the study of the principles of Environmental Economics this course sets out to answer those questions. Addressing a wide-range of economy-environment problems including car pollution, over-fishing, climate change and declining oil stocks, the course shows that most environmental problems can be solved through the adoption of policies crafted with the careful application of economic reasoning.

ENV-6012B

20

PROGRAMMING FOR NON-SPECIALISTS

The purpose of this module is to give the student a solid grounding in the essential features programming using the Java programming language. The module is designed to meet the needs of the student who has not previously studied programming.

CMP-5020B

20

Students must study the following modules for 60 credits:

Name Code Credits

RESEARCH TRAINING PROJECT

This year long module involves individual research in the environmental sciences with the topic suggested by and closely directed by a supervisor. The work will develop research skills through learning by doing and will be presented as a seminar and in the form of a research paper. The project differs from Year 3 project in requiring greater time and higher expected standards of research design and application of data. This module is restricted to UG students on the MSci programme only.

ENV-7026Y

60

Students will select 40 - 60 credits from the following modules:

Note: MTHD7007B Dynamical Oceanography with Advanced Topics and MTHD7018B Dynamical Meteorology with Advanced Topics run in altermate years.

Name Code Credits

CLIMATE CHANGE: PHYSICAL SCIENCE BASIS

Climate change and variability have played a major role in shaping human history, and the prospect of a warming world as a result of human activities (principally via changing atmospheric composition) presents society with an increasing challenge over the coming decades. This module covers the science of climate change and our current understanding of anthropogenic effects on climate. It provides details about the approaches, methods and techniques for understanding the history of climate change and for developing climate projections for the next 100 years, supporting further study of the scientific or policy aspects of the subject in either an academic or applied context. Starting with an introduction to the changing climate, techniques and approaches, and the main themes in current climate research, the module is structured around three topics: (1) fundamentals of the changing climate: techniques and approaches, including the Earth's energy balance, causes of climate change and the greenhouse effect; (2) research methods, consisting of empirical approaches to climate reconstruction (such as tree-ring research), assembly of observational data (focusing on the global temperature record) and data analysis (causes of recent climate change) and theoretical or model-based approaches (including an introduction to energy balance models and general circulation models); (3) the history of climate change and potential causal mechanisms, concentrating on the period from 1000 CE to the present and climate projections out to 2100 CE The module is lecture based but supplemented by compuyter modeling practical classes and student-led seminars.

ENV-7014A

20

DYNAMICAL OCEANOGRAPHY WITH ADVANCED TOPICS

This level 7 module covers modelling the large scale ocean circulation and structure, internal waves and coastal flows. The mathematical modelling of the oceans in this module provides a demonstration of how the techniques developed in second year modules on fluid dynamics and differential equations can be used to explain some interesting phenomena in the real physical world. The module begins with a discussion of the effects of rotation in fluid flows. The dynamics of large scale ocean circulation is discussed including the development of ocean gyres and strong western boundary currents. The thermal structure associated with these flows is examined. These large scale currents are responsible for the variation in climate between land on the eastern and western side of major ocean basins. The dynamics of equatorial waves are examined. Such waves are intimately linked with the El Nino phenomena which affects the climate throughout the globe. The advanced topic is Baroclinic instability.

MTHD7007B

20

MODELLING ENVIRONMENTAL PROCESSES

The aim of the module is to show how environmental problems may be solved from the initial problem, to mathematical formulation and numerical solution. Problems will be described conceptually, then defined mathematically, then solved numerically via computer programming. The module consists of lectures on numerical methods and computing practicals (using Matlab); the practicals being designed to illustrate the solution of problems using the methods covered in lectures. The module will guide students through the solution of a model of an environmental process of their own choosing. The problem will be discussed and placed into context through a project proposal, instead of an essay, and then solved and written up in a project report. The skills developed in this module are highly valued by prospective employers of students wishing to carry on into further studies or in professional employment. MSci STUDENTS NOTE, TO TAKE THIS MODULE YOU CANNOT HAVE PREVIOUSLY TAKEN ENV-6004A OR EQUIVALENT

ENV-7003A

20

OCEAN OBSERVING SYSTEMS

This module will introduce you to the technology for 21st century ocean observing systems. It aims to give you hands-on and practical experience with the latest marine technology. The module will discuss cabled ocean observatories, floats and autonomous vehicles, exploring both how they work and how they can be applied to marine monitoring. Marine autonomy is a growing area, with applications in policy (for example marine monitoring for the Marine Strategy Framework Directive) and in industry (for example oil and gas, marine renewables) as well as scientific research. You will learn about the various sensors that are deployed in the ocean on these platforms, how they work, what they are used for, and how to calibrate and process the data. A key part of the module will be equipping you with skills in using ocean gliders.

ENV-7035A

20

THEORY OF WATER WAVES WITH ADVANCED TOPICS

This course provides an introduction to the theory of water waves. It requires some knowledge of hydrodynamics and multivariable calculus. The unit is suitable for those with an interest in Applied Mathematics. Overview: Free surface problems occur in many aspects of science and everyday life. Examples of free surface problems are waves on a beach, bubbles rising in a glass of champagne and a liquid jet flowing from a tap. In these examples the free surface is the surface of the sea, the interface between the gas and the champagne and the boundary of the falling jet. We will study aspects of linear and nonlinear water waves using analytical techniques.

MTHE7002A

20

WAVE, TIDAL AND HYDRO ENERGY ENGINEERING

This module studies renewable energy sources that use the energy stored in water to produce electrical energy. An examination is made into the potential energy and kinetic energy stored in water, either implicitly through waves/tide or explicitly in hydro. Devices for energy extraction from waves are examined with the effect of wave height, period and speed considered but an essential focus is on wave forces on offshore structures of any type. Tidal energy extraction devices are also studied with design decisions regarding the tide-pool considered. Finally the design and operation of hydroelectric turbines is studied with a particular focus on pipe flow and pipe networks using commercial software. Practicalities are discussed such as the characteristics of regions that are suitable for each of the energy generation modes and how measurements can be made as to a site's likely energy output.

ENG-7004B

20

WIND ENERGY ENGINEERING

Wind energy is the main provider of renewable energy and the source that is receiving the majority of investment in both the UK and overseas, making its study vital to energy engineering. This module begins by examining the kinetic energy of air and the design of wind turbines to extract this energy. Relationships between wind speed, blade area, turbine height and resulting output power are studied. Different turbine designs are briefly examined and comparisons made of their effectiveness. Issues regarding placement of wind turbines are discussed as well as the choice of onshore or offshore locations. Practical considerations are discussed and include data collection of wind speeds for possible wind farm sites and implications of optimal spacing of turbines. The focus is on developing Excel skills using wind energy as the context.

ENG-7003B

20

Students will select 0 - 20 credits from the following modules:

PLEASE NOTE: Students must check that the module chosen from this range does not have a timetable clash with each other or with the modules already selected from Option Range A, noting that no more than one module with the same timetable slot e.g. EE, can be taken in one semester.

Name Code Credits

DYNAMICAL OCEANOGRAPHY WITH ADVANCED TOPICS

This level 7 module covers modelling the large scale ocean circulation and structure, internal waves and coastal flows. The mathematical modelling of the oceans in this module provides a demonstration of how the techniques developed in second year modules on fluid dynamics and differential equations can be used to explain some interesting phenomena in the real physical world. The module begins with a discussion of the effects of rotation in fluid flows. The dynamics of large scale ocean circulation is discussed including the development of ocean gyres and strong western boundary currents. The thermal structure associated with these flows is examined. These large scale currents are responsible for the variation in climate between land on the eastern and western side of major ocean basins. The dynamics of equatorial waves are examined. Such waves are intimately linked with the El Nino phenomena which affects the climate throughout the globe. The advanced topic is Baroclinic instability.

MTHD7007B

20

ENERGY AND CLIMATE CHANGE

Climate change is an energy problem. The conversion and use of energy is responsible for the significant majority of greenhouse gas emissions. Reducing emissions to mitigate climate change implies a transformation of the current global energy system. The required energy transition must include changes in technologies, behaviours, policies, infrastructures and whole systems. To avoid the impacts of climate change associated with a >2oC rise in mean global temperatures, future energy transitions must be deep, pervasive, long-term and sustained. This module examines energy transitions for climate change mitigation from a range of perspectives, focusing on the long-term. First, the implications for climate change of current energy resources, technologies and services will be evaluated. Second, evidence from history on the drivers and dynamics of energy transitions will be considered. Third, socioeconomic scenarios of future change over the 21st century will be used to explore the prospects and potentials for mitigating climate change by transforming the global energy system. Scenarios will be critically analysed from both technological and sociotechnical perspectives, supported by relevant concepts and theories. Particular emphasis will be placed on innovation challenges and needs. Fourth, the energy system and integrated assessment models used to quantitatively analyse climate change will be reviewed, and integrative energy system challenges considered.

ENV-7029B

20

ENVIRONMENTAL ASSESSMENT EFFECTIVENESS

BEFORE TAKING THIS MODULE YOU MUST HAVE TAKEN ENV-7020A Environmental Assessment is considered to be more effective when conducted at strategic levels of decision making, and is usually perceived to have a goal of achieving sustainable development. This module provides experience of conducting a particular form of strategic assessment, Sustainability Appraisal (SA), which incorporates environmental, social and economic considerations into plan making. Through practice of SA, a field course involving hands-on application of environmental assessment techniques, and consideration of effectiveness theory, this module will examine what makes assessment effective. Please note that there will be a charge for attending this field course. The overall field course charge is heavily subsidised by the School, but students enrolling must understand that they will commit to paying a sum (in the region of GBP300) to cover attendance. Further information is available from the module organiser.

ENV-7021K

20

ENVIRONMENTAL POLLUTION - SCIENCE, POLICY AND MANAGEMENT

This module aims to engage students in understanding complex interdisciplinary challenges associated with environmental pollution management via detailed studies of selected pollution issues. Students will develop skills in quantifying and analysing problems and developing and presenting effective policy responses.

ENV-7030B

20

FINANCIAL MATHEMATICS WITH ADVANCED TOPICS

The Mathematical Modelling of Finance is a relatively new area of application of mathematics yet it is expanding rapidly and has great importance for world financial markets. The module is concerned with the valuation of financial instruments known as derivatives. Introduction to options, futures and the no-arbitrage principle. Mathematical models for various types of options are discussed. We consider also Brownian motion, stochastic processes, stochastic calculus and Ito's lemma. The Black-Scholes partial differential equation is derived and its connection with diffusion brought out. It is applied and solved in various circumstances. The advanced topic will be stochastic interest rate models.

MTHE7013A

20

INTRODUCTION TO NUMERICAL ANALYSIS WITH ADVANCED TOPICS

This is an introductory course in numerical analysis which will cover approximating a function and it's derivative numerically. Further topics will include the numerical solution to boundary and initial value problems, numerical integration and nonlinear equations. Advanced topics will include an introduction to the numerical solution to hyperbolic partial differential equations.

MTHE7012B

20

SCIENCE, SOCIETY AND SUSTAINABILITY

Advances in science and technology have transformed the world we live in and have increasing potential to disrupt environment and society for good and bad. This situation is particularly problematic in addressing pressing sustainability challenges. Science remains one of the main means of understanding environmental problems and technology can offer important possible solutions to them. Yet, science and technology are also causes of these problems in the first place, with some unintended consequences and effects only just being realised. This, coupled with unacknowledged social and ethical implications, fuels problems of public trust, controversy and resistance to certain forms of science and technology. It is increasingly realised that these problematic relations between science, society and politics form one of the main barriers to action on environmental and sustainability issues from global to local scales. This module provides an essential grounding in understanding these relationships and ways to improve them, explored through grand challenges such as energy, climate change, and natural hazards. The module provides students with an advanced introduction to the field of science and technology studies and its links with geography and environmental science. It is taught through lectures, seminars, practical exercises and in class discussions and debates in three sections: Part 1: Science, politics and power; Part 2. Science, society and the public; and Part 3: Governing science and sustainability.

ENV-7038B

20

STABLE ISOTOPE GEOCHEMISTRY

From supernovae and the early condensation of the solar system, through the climate history of the planet and on to modern stratospheric chemistry, studies using stable isotopes have made a significant contribution to our understanding of the processes that shape the Earth. In this module we look at the theory and practice of isotope geochemistry, covering analytical methods and mass spectrometry, fractionation processes, and isotope behaviour in chemical cycles in the geosphere, hydrosphere, biosphere and atmosphere. The course consists of lectures, practicals, including hands-on experience in the stable isotope laboratory, and student led seminars.

ENV-7024A

20

STATISTICS AND MODELLING FOR SCIENTISTS USING R

R is a free software environment for statistical computing and graphics that has rapidly gained popularity among scientists, and which is now the most commonly used software tool in several environmental sciences. R provides a wide variety of statistical techniques (including linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, etc.). One of R's strengths is the capacity to produce publication-quality figures, including mathematical symbols and formulae. Using the R software as a platform will equip students with a flexible statistical and modelling tool, and the "R way of statistics" greatly facilitates the understanding of modelling and statistics. The insights gained and skills learned during this module will be used by students throughout their careers. This will significantly enhance students' employability and makes ENV-MA12 a flagship M-level module of the UEA.

ENV-7033B

20

SUSTAINABLE CONSUMPTION

This module investigates the impacts of consumption on social and environmental systems, and how these might be reduced. It presents the key theories and debates around sustainable consumption, and critically examines a range of strategies for achieving it, covering governmental, business, community and individual actors. A mainstream 'green growth' policy approach to sustainable consumption is contrasted with an alternative 'new economics' 'steady state economy' model, and we examine a range of perspectives on what drives consumption patterns. Workshop exercises to apply these theories to 'real world' examples will provide experiential learning opportunities. We then critically assess a selection of sustainable consumption initiatives in detail, for example local organic food, eco-housing, Transition Towns, local currencies and community-based behaviour-change campaigns. Students will be required to critically evaluate social science theories so some background in social science is stongly recommended (although not compulsory).

ENV-7025A

20

WAVE, TIDAL AND HYDRO ENERGY ENGINEERING

This module studies renewable energy sources that use the energy stored in water to produce electrical energy. An examination is made into the potential energy and kinetic energy stored in water, either implicitly through waves/tide or explicitly in hydro. Devices for energy extraction from waves are examined with the effect of wave height, period and speed considered but an essential focus is on wave forces on offshore structures of any type. Tidal energy extraction devices are also studied with design decisions regarding the tide-pool considered. Finally the design and operation of hydroelectric turbines is studied with a particular focus on pipe flow and pipe networks using commercial software. Practicalities are discussed such as the characteristics of regions that are suitable for each of the energy generation modes and how measurements can be made as to a site's likely energy output.

ENG-7004B

20

WIND ENERGY ENGINEERING

Wind energy is the main provider of renewable energy and the source that is receiving the majority of investment in both the UK and overseas, making its study vital to energy engineering. This module begins by examining the kinetic energy of air and the design of wind turbines to extract this energy. Relationships between wind speed, blade area, turbine height and resulting output power are studied. Different turbine designs are briefly examined and comparisons made of their effectiveness. Issues regarding placement of wind turbines are discussed as well as the choice of onshore or offshore locations. Practical considerations are discussed and include data collection of wind speeds for possible wind farm sites and implications of optimal spacing of turbines. The focus is on developing Excel skills using wind energy as the context.

ENG-7003B

20

Disclaimer

Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. Where this is the case, the University will endeavour to inform students.

Entry Requirements

  • A Level AAB including Mathematics
  • International Baccalaureate 33 points including HL Mathematics at 6 and one other HL subject at 6
  • Scottish Advanced Highers AAB including Mathematics
  • Irish Leaving Certificate AAAABB or 4 subjects at H1, 2 at H2 including Mathematics
  • Access Course Pass Access to HE Diploma with Distinction in 36 credits at Level 3 and Merit in 9 credits at Level 3, including 12 Level 3 Mathematics credits.
  • BTEC Only acceptable in combination with A level Mathematics
  • European Baccalaureate 80% overall with at least 70% in Maths

Entry Requirement

A level Mathematics or equivalent.

General Studies and Critical Thinking not accepted.

You are required to have Mathematics and English Language at a minimum of Grade C or Grade 4 or above at GCSE level.

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including writing, speaking, listening and reading|):

  • IELTS : 6.5 overall (minimum 6.0 in any component)

We also accept a number of other English language tests. Please click here to see our full list.

INTO University of East Anglia 

If you do not meet the academic and or English requirements for direct entry our partner, INTO University of East Anglia offers guaranteed progression on to this undergraduate degree upon successful completion of a preparation programme. Depending on your interests, and your qualifications you can take a variety of routes to this degree:

International Foundation in General Science FS1

International Foundation in Physical Sciences and Mathematics FS3 

Interviews

The majority of candidates will not be called for an interview and a decision will be made via UCAS Track. However, for some students an interview will be requested. You may be called for an interview to help the School of Study, and you, understand if the course is the right choice for you.  The interview will cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.  Where an interview is required the Admissions Service will contact you directly to arrange a convenient time. 

Gap Year

We welcome applications from students who have already taken or intend to take a gap year.  We believe that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and to contact admissions@uea.ac.uk directly to discuss this further.

Intakes

The School's annual intake is in September of each year.

  • A Level AAB or ABBB including Mathematics
  • International Baccalaureate 33 points including HL Mathematics at 6 and one other HL subject at 6
  • Scottish Highers AAABB including Mathematics
  • Scottish Advanced Highers AAB including Mathematics
  • Irish Leaving Certificate AAAABB including Mathematics
  • Access Course Pass Access to HE Diploma with Distinction in 36 credits at Level 3 and Merit in 9 credits at Level 3, including 12 Level 3 credits in Mathematics
  • BTEC DDD in a science related subject
  • European Baccalaureate Overall 80% with 70% in Mathematicss

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including writing, speaking, listening and reading|):

  • IELTS (SELT): 6.0 overall (minimum 5.5 in any component)

We also accept a number of other English language tests. Please click here to see our full list.

INTO University of East Anglia 

If you do not meet the academic and or English requirements for direct entry our partner, INTO University of East Anglia offers guaranteed progression on to this undergraduate degree upon successful completion of a preparation programme. Depending on your interests, and your qualifications you can take a variety of routes to this degree:

International Foundation in General Science FS1

International Foundation in Physical Sciences and Mathematics FS3 

Interviews

Applicants submitting UCAS applications that include a good personal statement and academic reference will be asked to attend a selection interview at the UEA. Selection interviews are normally quite informal and generally cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities. If an applicant is located overseas we will arrange a telephone interview. 

Gap Year

We welcome applications from students who have already taken or intend to take a gap year, believing that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and may wish to contact the appropriate Admissions Office directly to discuss this further.

Special Entry Requirements

A level Mathematics or equivalent.

General Studies and Critical Thinking not accepted.

Alternative Qualifications

We encourage you to apply if you have alternative qualifications equivalent to our stated entry requirement. Please contact us for further information.

GCSE Offer

Students are required to have GCSE Mathematics and English Language at grade C or above.

Fees and Funding

Undergraduate University Fees and Financial Support: Home and EU Students

Tuition Fees

Please see our webpage for further information on the current amount of tuition fees payable for Home and EU students and for details of the support available.

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. 

Home/EU - The University of East Anglia offers a range of Bursaries and Scholarships.  To check if you are eligible please visit 

______________________________________________________________________

Undergraduate University Fees and Financial Support: International Students

Tuition Fees

Please see our webpage for further information on the current amount of tuition fees payable for International Students.

Scholarships

We offer a range of Scholarships for International Students – please see our website for further information.

 

How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The system allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it must be sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The UCAS code name and number for the University of East Anglia is EANGL E14.

Further Information

If you would like to discuss your individual circumstances with the Admissions Office prior to applying please do contact us:

Undergraduate Admissions Office (Environmental Sciences)
Tel: +44 (0)1603 591515
Email: admissions@uea.ac.uk

Please click here to register your details online via our Online Enquiry Form.

International candidates are also actively encouraged to access the University's International section of our website.

    Next Steps

    We already know that your university experience will be life-changing, wherever you decide to go. At UEA, we also want to make that experience brilliant, in every way. Explore these pages to see exactly how we do this…

    We can’t wait to hear from you. Just pop any questions about this course into the form below and our enquiries team will answer as soon as they can.

    Admissions enquiries:
    admissions@uea.ac.uk or
    telephone +44 (0)1603 591515