MSci Meteorology and Oceanography


Attendance
Full Time
Award
Degree of Master of Sciences



UCAS Course Code
F790
A-Level typical
AAB (2018/9 entry) See All Requirements
Visit Us

Video

The School of Environmental Sciences is one of the longest established, largest and most fully developed Schools of Environmental Sciences in Europe. Our holistic approach to teaching and research, integrating physical, chemical, biological, social and geotechnical sciences into the study of natural and human environments, is truly a modern philosophy for the new millennium.

Watch It

Key facts

This course is accredited by the Institute of Marine Engineering Science and Technology (IMarEST). It is a stamp of excellence and generally involves a rigorous peer-review process, analysing the technical content taught and the processes in place to ensure effective delivery of the programme.

Video

We have been awarded a Queen’s Anniversary Prize for Higher and Further Education for 50 years of ground-breaking environmental science at UEA. The royal accolade from the Queen is the UK’s most prestigious higher education award.

Watch It

Article

What's making the antarctic melt? We've put robots into the ocean to unlock the complexities of warm water.

Read It

Key facts

Environmental Sciences has been ranked 4th in the UK, 11th in Europe and 40th in the World according to the QS World University Rankings 2018.

Video

View our video about Field Courses.

Watch It
How does our atmosphere work? How do scientists predict the weather? What is our impact on the Earth’s climate system? How do oceans work and how do they interact with our atmosphere?

Explore how it all links together with this unique four-year degree that brings together two disciplines. Together they’re essential for understanding the Earth’s climate system, our impact upon it, and how to make predictions about weather and climate.

You will be taught jointly by our Environmental Sciences and Mathematics departments. Both are highly ranked for research. In the most recent Research Excellence Framework we were ranked first in the UK for the impact of our world-leading research in Earth Systems and Environmental Sciences (Times Higher REF2014 Analysis), so you’ll benefit from our academics’ diverse and world-class expertise

Overview

The University of East Anglia is currently the only University in the UK where it is possible to study these two specialist subjects side-by-side in a combined degree format. The course is designed to provide you with a deeper insight into how the atmosphere and oceans work and interact. This approach gives you a detailed understanding of the Earth's climate system, alongside the impact of human society on the atmospheric and oceanic systems.

This four-year degree course is accredited by the Institute of Marine Engineering, Science and Technology (IMarEST). Because the degree programme is taught jointly between the Schools of Environmental Sciences and Mathematics, you will have an opportunity to choose from a range of module options, enabling you to pursue either a wide portfolio of subjects or specialise in a particular area. You'll also study advanced, Masters-level modules in your final year and complete an in-depth research project.

Field courses in Oceanography and Meteorology provide you with valuable hands-on experience designing experiments and working with scientific instrumentation. You will also benefit from our own in-house weather forecasting company, Weatherquest, which provides valuable teaching support and an opportunity to spend a week working in order to gain commercial awareness of the meteorological industry.

Some of our Meteorology and Oceanography students have also gained valuable experience on research cruises whilst conducting the fieldwork for their final year project.

Course Structure

In your first three years, you’ll follow the same course structure as the BSc Meteorology and Oceanography programme. In your final year you’ll study a range of Master’s level modules, as well as completing a substantial piece of independent research on a topic that matches your interests.

Year 1

You’ll learn the general scientific principles governing our environment in modules including Understanding the Dynamic Planet and Atmosphere & Oceans. You’ll also take multi-disciplinary modules from the wider Faculty of Science to help you develop essential analytical skills, including Maths for Scientists and Field Skills.

Year 2

In your second year you’ll take a range of compulsory scientific modules, including Meteorology and Ocean Circulation. And you’ll continue to develop your expertise in mathematical theory through the Mathematics for Scientists module. The optional meteorological field course gives you the chance for hands-on study in the Lake District.

Year 3

In your third-year research project you’ll investigate a specialist area in professional depth with one-to-one support from an academic supervisor. Alongside this you’ll choose from a range of modules on oceans and the atmosphere, looking at the climate system and atmospheric or marine chemistry. You’ll also get the chance to choose a module from another science school.

Year 4

In your final year you’ll carry out a substantial piece of independent research in a topic that matches your interests. Alongside this you’ll choose from a range of optional advanced Master’s level modules

Teaching and Learning

Teaching

You will be taught by leading meteorologists and oceanographers through a combination of lectures, practicals and field trips. Around 30-35% of your time will be spent in lectures, seminars, practicals and fieldwork, amounting to around 15-18 contact hours per week, with the remaining 65-70% on independent study.

In the lectures you’ll learn essential analytical skills, mathematical techniques, and discover how the atmosphere and oceans work and interact with each other to shape our climate.

Field courses and practical classes will be integral to your training and you’ll learn a variety of practical techniques using specialist equipment in the field. Some of our past field trips have been to Slapton, the Lake District and Oban.

Independent study

You’ll spend time carrying out independent study, researching in UEA’s state-of-the-art library, writing essays or carrying out practical work or projects.

This course will give you an excellent balance of independent thinking and study skills, helping you grow into a self-motivated learner, an expert researcher and analytical thinker. You will develop accuracy and precision in your written work through evidence-based analysis. And you’ll become well-versed in time management and organisation through self-directed study. Throughout your degree you will be given guidance on your work and constructive feedback to help you improve.

Assessment

We will use various assessment methods across the different modules, ranging from 100% coursework to 100% examination. In most modules the assessment is weighted 67% examination and 33% coursework – although skills-based and field modules are assessed by 100% coursework.

Coursework assessment methods include essays, written discussions, class tests, problem sheets, laboratory reports, field exercises, field notebooks and seminar presentations.

Optional Study abroad or Placement Year

We also offer a BSc Meteorology and Oceanography with a Year in Industry, where you spend your third year on an industrial placement. This ensures you graduate with relevant work experience, putting you one step ahead of other students.

Another option is the MSci Meteorology and Oceanography with a Year Abroad, giving you the chance to experience other cultures and learn different aspects of Meteorology and Oceanography at a partner university.

After the course

After graduating you could follow in the footsteps of recent graduates and work at the UK Met Office, Weatherquest, British Antarctic Survey and local and central government. Alternatively you might pursue postgraduate research in universities or government labs such as the Met Office or British Antarctic Survey.

Employability is embedded in your course, helping you develop your career and skills throughout your degree. We work closely with UEA’s Careers Service to help you meet employers (including alumni), explore career options, speak to industry mentors, and apply for internships, volunteering, and graduate jobs.

Career destinations

Examples of careers that you could enter include;

  • Government and university research
  • Weather forecasting
  • Environmental management or consultancy
  • Local and central government

Course related costs

Please see Additional Course Fees for details of other course-related costs.

Accreditation

This course is accredited by the Institute of Marine Engineering, Science and Technology (IMarEST). Accreditation of the course means that it meets the academic requirement, in part, for registration as a Chartered Scientist and Chartered Marine Scientist for a period of five years, from the 2016 student cohort intake to the 2020 student cohort intake subject to ongoing compliance.

We expect to apply for renewal of accreditation at the end of this period.

Course Modules 2018/9

Students must study the following modules for 100 credits:

Name Code Credits

GLOBAL ENVIRONMENTAL CHALLENGES

What are the most pressing environmental challenges facing the world today? How do we understand these problems through cutting-edge environmental science research? What are the possibilities for building sustainable solutions to address them in policy and society? In this module you will tackle these questions by taking an interdisciplinary approach to consider challenges relating to climate change, biodiversity, water resources, natural hazards, and technological risks. In doing so you will gain an insight into environmental science research 'in action' and develop essential academic study skills needed to explore these issues.

ENV-4001A

20

MATHEMATICS FOR SCIENTISTS A

You will cover differentiation, integration, vectors, partial differentiation, ordinary differential equations, further integrals, power series expansions, complex numbers and statistical methods as part of this module. In addition to the theoretical background there is an emphasis on applied examples. Previous knowledge of calculus is assumed. This module is the first in a series of three maths modules for those across the Faculty of Science that provide a solid undergraduate mathematical training. The follow-on modules are Mathematics for Scientists B and C.

ENV-4015Y

20

PROBABILITY AND MECHANICS

This module comprises two parts: "Probability" and "Mechanics" Probability is the study of the chance of events occurring. It has important applications to understanding the likelihood of multiple events happening together and therefore to rational decision-making. In the first part of this module, you will start by studying probability as a measurement of uncertainty, and looking at statistical experiments and Bayes' theorem. You will then consider both discrete and continuous probability distributions and the concept of expectation. Finally you will consider applications of probability, including Markov chains and reliability theory. Newtonian mechanics provides a basic description of how particles and rigid bodies move in response to applied forces. In the second part of the module you will study Newton's laws of motion and how they can be applied to particle dynamics, vibrations, motion in polar coordinates, and conservation laws.

MTHB4007B

20

RESEARCH AND FIELD SKILLS

You will develop a range of transferable skills, tools and resources that are widely used in research across the Environmental Sciences and Geography. It aims to provide a broad understanding of the research process through activities that involve formulating research questions, collecting data using appropriate sources and techniques, collating and evaluating information and presenting results. A week-long residential field course, held at Easter and based at Slapton Ley, Devon, applies field, lab and other skills to a variety of environmental science and geography topics. Depending on the size of the cohort, students on selected degree programmes may be offered the option of an alternative field course arrangement.

ENV-4004Y

20

UNDERSTANDING THE DYNAMIC PLANET

Understanding of natural systems is underpinned by physical laws and processes. You will explore the energy, mechanics, and physical properties of Earth materials and their relevance to environmental science using examples from across the Earth's differing systems. The formation, subsequent evolution and current state of our planet are considered through its structure and behaviour - from the planetary interior to the dynamic surface and into the atmosphere. You will study Plate Tectonics to explain Earth's physiographic features - such as mountain belts and volcanoes - and how the processes of erosion and deposition modify them. The distribution of land masses is tied to global patterns of rock, ice and soil distribution and to atmospheric and ocean circulation. You will also explore geological time - the 4.6 billion year record of changing conditions on the planet - and how geological maps can be used to understand Earth history. This course provides you with an introduction to geological materials - rocks, minerals and sediments - and to geological resources and natural hazards.

ENV-4005A

20

Students will select 20 credits from the following modules:

Students will be assigned to 20 credits from the following modules. Assignments will be made according to previous Chemistry qualifications.

Name Code Credits

ATMOSPHERE and OCEANS I

The habitability of planet Earth depends on physical and chemical systems that control everything from the weather and climate to the growth of all living organisms. This module introduces you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret them. It leads naturally to second and third year study of these systems in more detail, but even if you choose to study other aspects of environmental sciences, a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The module is made up of two distinct components. One focuses on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) The other focuses on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). Interrelationships between these components are explored throughout. Teaching of this module is through a mix of lectures, laboratory practical classes, workshops and a half-day field trip. This module provides a Basic Chemistry introduction for those students who have little or no background in chemistry prior to joining UEA.

ENV-4007B

20

ATMOSPHERE and OCEANS II

The habitability of planet Earth depends on physical and chemical systems that control everything from the weather and climate to the growth of all living organisms. This module introduces you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret them. It leads naturally to second and third year study of these systems in more detail, but even if you choose to study other aspects of environmental sciences, a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The module is made up of two distinct components. One focuses on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) The other focuses on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). Interrelationships between these components are explored throughout. Teaching of this module is through a mix of lectures, laboratory practical classes, workshops and a half-day field trip. This module is for students with previous experience of chemistry.

ENV-4008B

20

Students must study the following modules for 100 credits:

Name Code Credits

INDEPENDENT PROJECT - PROPOSAL

With guidance from a supervisor, you will choose a topic, design the research and collect, analyse and interpret data. You will report on progress at various stages: in the selection of a topic, the detailed plan, an interim report and an oral presentation. A final report in the form of a dissertation not exceeding 10,000 words is required. When planning the project and again after completing the report, you will reflect on the range of subject-specific and generic skills acquired through your degree and how these are reinforced and complemented by skills acquired through your project. A final item of summative work assesses the clarity by which you communicate and evidence your range of skills in the form of a covering letter and cv for a potential job application. To further support the transition to employment, you can present a formative research poster that summarises the main aspects of the work to prospective employers. This module is compulsory for all degree courses in the School of Environmental Sciences and is an independent piece of research.

ENV-6021B

0

MATHEMATICS FOR SCIENTISTS B

This module is the second in a series of three mathematical modules for students across the Faculty of Science. You will cover vector calculus (used in the study of vector fields in subjects such as fluid dynamics and electromagnetism), time series and spectral analysis (a highly adaptable and useful mathematical technique in many science fields, including data analysis), and fluid dynamics (which has applications to the circulation of the atmosphere, ocean, interior of the Earth, chemical engineering, and biology). There is a continuing emphasis on applied examples.

MTHB5006A

20

MATHEMATICS FOR SCIENTISTS C

This module is the third in a series of three mathematical units for students across the Faculty of Science. It covers matrix algebra and numerical methods, partial differential equations and solid mechanics. There is a continuing emphasis on applied examples, and the use of numerical computing software (Matlab) is extended with a dedicated programming component. The module is taught by mathematicians with considerable expertise in the use of mathematics in the natural/environmental sciences and is largely designed to equip students with the tools necessary for advanced second and third level modules, particularly those in the physical sciences.

MTHB5007B

20

METEOROLOGY I

The weather affects everyone and influences decisions that are made on a daily basis around the world. From whether to hang your washing out on a sunny afternoon, to which route a commercial aircraft takes as it travels across the ocean, weather plays a vital role. With that in mind, what actually causes the weather we experience? In this module you'll learn the fundamentals of the science of meteorology. You'll concentrate on the physical process that allow moisture and radiation to transfer through the atmosphere and how they ultimately influence our weather. The module contains both descriptive and mathematical treatments of radiation balance, thermodynamics, dynamics, boundary layers, weather systems and the water cycle. The module is assessed through a combination of one piece of coursework and an exam, and is designed in a way that allows those with either mathematical or descriptive abilities to do well, although a reasonable mathematical competence is essential, including basic understanding of differentiation and integration.

ENV-5008A

20

OCEAN CIRCULATION

This module gives you an understanding of the physical processes occurring in the basin-scale ocean environment. We will introduce and discuss large scale global ocean circulation, including gyres, boundary currents and the overturning circulation. Major themes include the interaction between ocean and atmosphere, and the forces which drive ocean circulation. You should be familiar with partial differentiation, integration, handling equations and using calculators. Shelf Sea Dynamics is a natural follow-on module and builds on some of the concepts introduced here. We strongly recommend that you also gain oceanographic fieldwork experience by taking the 20-credit biennial Marine Sciences field course.

ENV-5016A

20

SHELF SEA DYNAMICS AND COASTAL PROCESSES

The shallow shelf seas that surround the continents are the oceans that we most interact with. They contribute a disproportionate amount to global marine primary production and CO2 drawdown into the ocean, and are important economically through commercial fisheries, offshore oil and gas exploration, and renewable energy developments (e.g. offshore wind farms). You will explore the physical processes that occur in shelf seas and coastal waters, their effect on biological, chemical and sedimentary processes, and how they can be harnessed to generate renewable energy. You will develop new skills during this module that will support careers in the offshore oil and gas industry, renewable energy industry, environmental consultancy, government laboratories (e.g. Cefas) and academia. The level of mathematical ability required to take this module is similar to Ocean Circulation and Meteorology I. You should be familiar with radians, rearranging equations and plotting functions.

ENV-5017B

20

Students will select 20 credits from the following modules:

Students must also submit a request to the School for a place on fieldcourses.

Name Code Credits

MARINE SCIENCES FIELDCOURSE

The first three days of the fieldcourse involve lectures, seminars and practical sessions on physical, chemical and biological oceanographic techniques, as well as analysis of data and planning of field activities. The next five days see you undertake practical activities using oceanographic research ships and laboratory facilities. On the final day, you'll be involved in data interpretation and presentations. The number of days undertaken will also depend on the number of students undertaking the fieldcourse, so the above days are flexible. This module runs every 2 years and only goes ahead if there are sufficient students enrolled.

ENV-5020K

20

WEATHER APPLICATIONS

This module will build upon material covered in Meteorology I, by covering topics such as synoptic meteorology, weather hazards, micro-meteorology, further thermodynamics and weather forecasting. The module includes a major summative coursework assignment based on data collected on a UEA meteorology fieldcourse in a previous year.

ENV-5009B

20

WEATHER APPLICATIONS WITH FIELDCOURSE

Weather is one of the most popular topics of conversation. But how, specifically, does it present risks and opportunities, to people, organisations and to the wider environment? In this module you will develop a clear understanding of these linkages and an evidence base to draw on in future roles in which weather is a factor. You'll learn how to confidently source a diverse range of real-time weather information and you'll practice analysing such data, leading subsequently to successful interpretation and effective communication, both written and in front of the camera. You'll see, first hand, how meteorology depends upon computer systems for the efficient sharing, processing and visualisation of weather information. Being taught by weather practitioners with long experience of providing weather services to users, you will get the inside track on what it's like to work in weather. Weather Forecasting is one central theme and application which will provide a focus for learning. How are forecasts made and delivered, who uses forecasts and what are their distinctive needs? Success in forecasting depends in part on a good physical understanding of atmospheric processes - through practical work, we'll study those processes and use real examples of weather systems and events to reinforce the learning. At the end of the module, through an embedded week-long Easter residential fieldcourse, you'll apply your enhanced process understanding and forecasting knowledge in a hands-on way to design and implement meteorological field experiments, testing hypotheses through the collection and interpretation of field data collected using weather sensors. You'll write up your choice of fieldcourse experiment for assessment, after first receiving informal feedback on a related poster presentation.

ENV-5010K

20

Students must study the following modules for 40 credits:

Name Code Credits

INDEPENDENT PROJECT

With guidance from a supervisor, you will choose a topic, design the research and collect, analyse and interpret data. You will report on progress at various stages: in the selection of a topic, the detailed plan, an interim report and an oral presentation. A final report in the form of a dissertation not exceeding 10,000 words is required. When planning the project and again after completing the report, you will reflect on the range of subject-specific and generic skills acquired through your degree and how these are reinforced and complemented by skills acquired through your project. A final item of summative work assesses the clarity by which you communicate and evidences your range of skills in the form of a covering letter and cv for a potential job application. To further support the transition to employment you can present a formative research poster that summarises the main aspects of the work to prospective employers. This module is compulsory for all degree courses in the School of Environmental Sciences and is an independent piece of research.

ENV-6021A

40

Students will select 0 - 60 credits from the following modules:

Name Code Credits

CLIMATE SYSTEMS

What sets the mean global temperature of the world? Why are some parts of the world arid whilst others at the same latitudes are humid? This module aims to provide you with an understanding of the processes that determine why the Earth's climate (defined, for example, by temperature and moisture distribution) looks like it does, what the major circulation patterns and climate zones are and how they arise. You will study why the climate changes in time over different timescales, and how we use this knowledge to understand the climate systems of other planets. This module is aimed at you if you wish to further your knowledge of climate, or want a base for any future study of climate change, such as the Meteorology/Oceanography or Climate Change degrees.

ENV-6025B

20

MODELLING ENVIRONMENTAL PROCESSES

The aim of the module is to show how environmental problems may be solved from the initial problem, to mathematical formulation and numerical solution. Problems will be described conceptually, then defined mathematically, then solved numerically via computer programming. The module consists of lectures on numerical methods and computing practicals; the practicals being designed to illustrate the solution of problems using the methods covered in lectures. The module will guide students through the solution of a model of an environmental process of their own choosing. The skills developed in this module are highly valued by prospective employers.

ENV-6004A

20

THE CARBON CYCLE AND CLIMATE CHANGE

What do you know about the drivers of climate change? Carbon dioxide (CO2) is the greenhouse gas that has, by far, the greatest impact on climate change, but how carbon cycles through the Earth is complex and not fully understood. Predicting future climate or defining 'dangerous' climate change is therefore challenging. In this module you will learn about the atmosphere, ocean and land components of the carbon cycle. We cover urgent global issues such as ocean acidification and how to get off our fossil fuel 'addiction', as well as how to deal with climate denialists.

ENV-6008A

20

Students will select 0 - 40 credits from the following modules:

Name Code Credits

BIOLOGICAL OCEANOGRAPHY AND MARINE ECOLOGY

This module explores the evolution, biodiversity and ecology of bacteria, diatoms, coccolithophores and nitrogen fixers, and the physiology and distribution of zooplankton. Example ecosystems such as the Antarctic, mid ocean gyres and Eastern Boundary Upwelling Systems will be studied in detail and predictions of the impact of environmental change (increasing temperature, decreasing pH, decreasing oxygen, and changes in nutrient supply) on marine ecosystem dynamics will be examined. Biological oceanographic methods will be critically evaluated. The module will include a reading week in week 7 and a voluntary employability visit to the Centre for the Environment, Fisheries and Aquaculture Science (CEFAS). You are expected to have some background in biology, e.g. have taken a biology, ecology or biogeochemistry based second year module.

ENV-6005A

20

PALAEOCLIMATOLOGY

This module examines the geological evidence for climatic change through the Quaternary Period (the last 2.6 million years) and the longer-term evolution of climate through the Cenozoic Era (the last 65 million years). You will explore the interpretation and causal mechanisms behind these major global environmental changes using a diverse range of approaches - isotope geochemistry, sedimentology, palaeoecology and organic geochemistry. We will focus on the geochemical, biological and sedimentological information that can be obtained from marine sediments, ice cores, and terrestrial environments and use these records to reconstruct the timing extent and magnitude of selected climatic events in the geological record.

ENV-6017B

20

Students will select 0 - 40 credits from the following modules:

Please note that ENV-5020K does not run every year and note that MTHE6007B Dynamical Oceanography and MTHD6018B Meteorology run in alternate years.

Name Code Credits

DYNAMICAL OCEANOGRAPHY

The ocean is an important component of the Earth's climate system. You will cover mathematical modelling of the large-scale ocean circulation and oceanic wave motion. You will build upon the techniques in fluid dynamics and differential equations that you developed in year two. You will then use these techniques to explain some interesting phenomena in the ocean that are relevant to the real world. We begin by examining the effects of rotation on fluid flows. This naturally leads to the important concept of geostrophy, which enables ocean currents to be inferred from measurements of the sea surface height or from vertical profiles of seawater density. Geostrophy also plays a key role in the development of a model for the global scale circulation of abyssal ocean. The role of the wind in driving the ocean will be examined. This enables us to model the large-scale circulation of the ocean including the development of oceanic gyres and strong western boundary currents, such as the Gulf Stream. You will conclude by examining the role of waves, both at the sea surface and internal to the ocean. The differences between wave motion at mid-latitudes and the Equator are examined, as is the roll of the Equator as a wave-guide. The equatorial waves that you will study are intimately linked with the El Nino phenomenon that affects the climate throughout the globe.

MTHE6007B

20

MARINE SCIENCES FIELDCOURSE

The first three days of the fieldcourse involve lectures, seminars and practical sessions on physical, chemical and biological oceanographic techniques, as well as analysis of data and planning of field activities. The next five days see you undertake practical activities using oceanographic research ships and laboratory facilities. On the final day, you'll be involved in data interpretation and presentations. The number of days undertaken will also depend on the number of students undertaking the fieldcourse, so the above days are flexible. This module runs every 2 years and only goes ahead if there are sufficient students enrolled.

ENV-5020K

20

Students will select 0 - 20 credits from the following modules:

PLEASE NOTE: Students must check that the module chosen from this range does not have a timetable clash with modules already selected, noting that no more than one module with the same timetable slot e.g. EE, can be taken in one semester. Students must submit a request to the School for a place on fieldcourses.

Name Code Credits

AQUATIC ECOLOGY

Explore how chemical, physical and biological influences shape the biological communities of rivers, lakes and estuaries in temperate and tropical regions. Three field visits and laboratory work, usually using microscopes and sometimes analysing water quality, provide an important practical component to this module. A good complement to other ecology modules, final-year Catchment Water Resources and modules in development studies or geography, it can also be taken alongside Aquatic Biogeochemistry or other geochemical and hydrology modules. Students selecting this module must have a background in basic statistical analysis of data.

ENV-5001A

20

CATCHMENT WATER RESOURCES

In this module, you will adopt an integrated approach to studying surface water and groundwater resources in river basins. You will address the fundamental requirement for an interdisciplinary catchment-based approach to managing and protecting water resources that includes an understanding of land use and its management. The module content includes the design of catchment monitoring programmes, nutrient mass balance calculations, river restoration techniques, an overview of UK and European agri-environmental policy and approaches to assessing and mitigating catchment flooding.

ENV-6018B

20

CLIMATE CHANGE: SCIENCE AND POLICY

You will develop your skills and understanding in the integrated analysis of global climate change, using perspectives from both the natural sciences and the social sciences. You will gain a grounding in the basics of climate change science, impacts, adaptation, mitigation and their influence on and by policy decisions. This module also offers you a historical perspective on how climate policy has developed, culminating in the December 2015 Paris Agreement. Finally, it considers what will be required to meet the goal of the Paris Agreement to limit global warming to well below 2 #C above pre-industrial levels.

ENV-5003A

20

ENERGY AND PEOPLE

Modern everyday life rests fundamentally on the availability of energy. Since the 1970s, however, serious concerns have been raised about the sustainability of current energy systems. Traditionally, these problems have been analysed (and solutions proposed) from within the engineering and physical sciences. Understanding, managing and attempting to solve energy problems, however, demands a thorough appreciation of how people, at a range of scales, engage with energy in the course of their daily lives. This is a critical challenge for the social sciences, and will be a core focus of this module. Through this module, you will discover and explore a range of social science perspectives on the inter-relationships between energy and people. You will learn how to apply these ideas to contemporary energy problems and use them to generate your own visions for a sustainable energy future. You'll also be given the chance to work as part of a team and to communicate your ideas through both written and oral presentation. You'll begin by tracing the history and development of energy intensive societies and everyday lives as a means of understanding how energy has emerged as a key sustainability problem. You'll then go into more depth around different theories of social and technical change before exploring how these can be used to critically analyse a range of people-based solutions to energy problems that are currently being tried and tested around the world. You'll learn through a combination of lectures and seminars involving interactive group projects, class debates, practical exercises and student-led learning. At the end of the module, you will have developed the knowledge, skills and experience necessary to allow you to apply theories of social and technical change to a range of real-world energy problems. You'll be able to develop and critically analyse your own (and already existing) visions of a sustainable energy future, and you'll be able to creatively communicate these ideas to a range of different audiences. Please note, this is a strongly social science based module and is not recommended for students without a strong grounding in social science thinking and principle.

ENV-6026B

20

ENVIRONMENTAL POLITICS AND POLICY MAKING

The most significant obstacles to problem solving are often political, not scientific or technological. This module examines the emergence and processes of environmental politics. It analyses these from different theoretical perspectives, particularly theories of power and public policy making. The module is focused on contemporary examples of politics and policy making at UK, EU and international levels. The module supports student-led learning by enabling you to select (and develop your own theoretical interpretations of) 'real world' examples of politics. Assessment will be via seminar presentations and a case study essay. The module assumes no prior knowledge of politics.

ENV-5002B

20

GEOPHYSICAL HAZARDS

Geophysical hazards such as earthquakes, volcanic eruptions, tsunamis and landslides have significant environmental and societal impacts. This module focuses on the physical basis and analysis of each hazard, their global range of occurrence, probability of occurrence and their local and global impact. You will address matters such as hazard monitoring, modelling and assessment, and consider approaches towards risk mitigation and the reduction of vulnerability (individual and societal), with an emphasis on their practical implementation. Scenarios and probabilities of mega-disasters are also investigated. All the teaching faculty involved have practical experience of supplying professional advice on these hazards (and related risks) in addition to their own research involvement. A basic knowledge of physical science and of mathematics is assumed e.g. use of logs, exponentials, powers, cosines, rearrangement of equations.

ENV-6001B

20

HYDROLOGY AND HYDROGEOLOGY

Hydrology and hydrogeology are Earth Science subjects concerned with the assessment of the natural distribution of water in time and space and the evaluation of human impacts on the water. This module provides an introduction to geological controls on groundwater occurrence, aquifer characteristics, basic principles of groundwater flow, basic hydrochemistry, an introduction to catchment hydrology, hydrological data collection and analysis, runoff generation processes and the principles of rainfall-runoff modelling. Practical classes develop analytical skills in solving problems as well as field skills in pumping test analysis and stream gauging. A field excursion in Norfolk is also offered in this module.

ENV-5021A

20

LOW CARBON ENERGY: SCIENCE AND TECHNOLOGY

This module examines the principles of energy science and technologies including energy generation and conversion, such as renewables, bioenergy and batteries. It provides a systematic and integrated account of the issues in energy resources and conversion. This knowledge is used to make a rational analysis of energy availability, applications and selections from physical, technical and environmental considerations. It also provides students with the opportunity to explore the future of energy provision in greater depth.

ENV-5022B

20

NATURAL RESOURCES AND ENVIRONMENTAL ECONOMICS

Environmental economics provides a set of tools and principles which can be useful in understanding natural resource management issues. This module introduces you to key principles and tools of environmental economics for students who have not studied the subject previously. It then explores how these principles can be applied to address a number of complex economy-environment problems including climate change, over-fishing and water resources management. In this module you will have the opportunity to practically apply cost-benefit analysis as a framework for decision-making and will gain knowledge on the key non-market valuation techniques that are used to monetarily value environmental goods and services. At the end of the module you will have gained insights into how environmental economics is used in developing natural resource management policy as well as some of the challenges in using environmental economics in policy-making.

ENV-6012B

20

PROGRAMMING FOR NON-SPECIALISTS

The purpose of this module is to give you a solid grounding in the essential features of programming using the Java programming language. The module is designed to meet the needs of the student who has not previously studied programming.

CMP-5020B

20

WAVES

You will gain an introduction to the theory of waves. You will study aspects of linear and nonlinear waves using analytical techniques and Hyperbolic Waves and Water Waves will also be covered. It requires some knowledge of hydrodynamics and multi-variable calculus. The unit is suitable for those with an interest in Applied Mathematics.

MTHE6031A

20

Students must study the following modules for 60 credits:

Name Code Credits

RESEARCH TRAINING PROJECT

This year long module involves you carrying out individual research in the environmental sciences, with the topic suggested by and closely directed by a supervisor. The work will develop your research skills through learning by doing. You will present your results as a seminar and in the form of a research paper. The project differs from the Year 3 project in requiring greater time and higher expected standards of research design and application of data. This module is restricted to UG students on the MSci programme only.

ENV-7026Y

60

Students will select 40 - 60 credits from the following modules:

Please note that ENV-7030K does not run every year and note that MTHE7007B Dynamical Oceanography with Advanced Topics and MTHD7018B Dynamical Meteorology with Advanced topics run in alternate years.

Name Code Credits

CLIMATE CHANGE: PHYSICAL SCIENCE BASIS

Climate change and variability have played major roles in shaping human history, and the prospect of human-caused global warming is a pressing challenge for society. But how and why has climate changed, how do we predict future climate and how do our choices affect future climate? Throughout this module, you will learn how climate science can answer these questions. Discover the approaches, methods and techniques for understanding the history of climate change and for developing climate projections for the next 100 years. You'll also explore the scientific evidence about climate change and where the uncertainties lie. Starting with an introduction to the changing climate and the main themes in current climate research, your study will be structured around three topics. (1) Fundamentals of the changing climate including the Earth's energy balance, causes of climate change and the greenhouse effect. (2) Research methods, consisting of empirical approaches to climate reconstruction (such as tree-ring research), analysis of observational data (focusing on the global temperature record and causes of recent climate change), and an introduction to energy balance models and general circulation models. (3) Climate change and causal mechanisms, concentrating on the period from 1000 CE to the present and climate projections out to 2100 CE. Studying the physical science basis of climate change will enable you to understand what controls our climate, to explain the causes of the changes we have observed, and to interpret projections of future climate change.

ENV-7014A

20

DYNAMICAL OCEANOGRAPHY WITH ADVANCED TOPICS

The ocean is an important component of the Earth's climate system. In this module, you will cover mathematical modelling of the large-scale ocean circulation and oceanic wave motion. You will build upon the techniques in fluid dynamics and differential equations that you developed in previous years of study. It then uses these techniques to explain some interesting phenomena in the ocean that are relevant to the real world. We begin by examining the effects of rotation on fluid flows. This naturally leads to the important concept of geostrophy, which enables ocean currents to be inferred from measurements of the sea surface height or from vertical profiles of seawater density. Geostrophy also plays a key role in the development of a model for the global scale circulation of abyssal ocean. The role of the wind in driving the ocean will be examined. This enables us to model the large-scale circulation of the ocean including the development of oceanic gyres and strong western boundary currents, such as the Gulf Stream. You will conclude by examining the role of waves, both at the sea surface and internal to the ocean. The differences between wave motion at mid-latitudes and the Equator are examined, as is the roll of the Equator as a wave-guide. The equatorial waves that you will study are intimately linked with the El Nino phenomenon that affects the climate throughout the globe. The advanced topic is a study of barotropic and baroclinic instability.

MTHE7007B

20

MARINE SCIENCES FIELDCOURSE

The first three days of the fieldcourse involve lectures, seminars and practical sessions on physical, chemical and biological oceanographic techniques, as well as analysis of data and planning of field activities. The next five days see you undertake practical activities using oceanographic research ships and laboratory facilities. On the final day, you'll be involved in data interpretation and presentations. The number of days undertaken will also depend on the number of students undertaking the fieldcourse, so the above days are flexible. This module runs in the summer prior to the start of the academic year and is only available to integrated masters (MSci) students. Please note that you can only enrol onto this module via an application form from the school and not via the standard module enrolment process

ENV-7030K

20

MODELLING ENVIRONMENTAL PROCESSES

The aim of the module is to show how environmental problems may be solved from the initial problem, to mathematical formulation and numerical solution. Problems will be described conceptually, then defined mathematically, then solved numerically via computer programming. The module consists of lectures on numerical methods and computing practicals; the practicals being designed to illustrate the solution of problems using the methods covered in lectures. The module will guide students through the solution of a model of an environmental process of their own choosing. The skills developed in this module are highly valued by prospective employers.

ENV-7003A

20

MODERN METHODS IN AIR POLLUTION SCIENCE

Air pollution is one of the most significant environmental problems of the 21st century, with serious implications for human health, ecosystem and infrastructure damage, as well as global atmospheric and climate change. In this module, you'll study the methods used to monitor air pollutants at urban, regional and global scales, and explore how these measurements are interpreted using a variety of numerical models and graphical tools.

ENV-7040B

20

WAVE, TIDAL AND HYDRO ENERGY ENGINEERING

This module studies renewable energy sources that use the energy stored in water to produce electrical energy. An examination is made into the potential energy and kinetic energy stored in water, either implicitly through waves/tide or explicitly in hydro. Devices for energy extraction from waves are examined but an essential focus is on wave forces on structures. Tidal energy extraction devices including barrages, lagoons and tidal stream turbines are also studied. The design and operation of hydroelectric turbines is studied with a particular focus on pipe flow and pipe networks using commercial software.

ENG-7004B

20

WIND ENERGY ENGINEERING

Wind energy is the main provider of renewable energy and the source that is receiving the majority of investment, making its study vital to energy engineering. This module begins by examining the kinetic energy of moving air and the design of wind turbines to extract this energy. Different turbine designs are briefly examined and comparisons made of their effectiveness. Issues regarding placement of wind turbines and practical considerations are discussed and include data collection of wind speeds for possible wind farm sites using optimal spacing of turbines. The focus is on developing Excel skills and Technical Report-writing skills using wind energy as the context.

ENG-7003B

20

Students will select 0 - 20 credits from the following modules:

PLEASE NOTE: Students must check that the module chosen from this range does not have a timetable clash with each other or with the modules already selected from Option Range A, noting that no more than one module with the same timetable slot e.g. EE, can be taken in one semester.

Name Code Credits

ENERGY AND CLIMATE CHANGE

The premise from which this module starts is that Climate Change is fundamentally an energy systems problem. It will equip you with an in depth understanding of the complexities of changing energy systems, enabling you to critically engage with debates around future "energy transitions" and the role that various technologies might play. Drawing on historical evidence, you will learn about the key relationships between energy, fossil fuels and the economy. Looking forward, you will learn about the role of energy scenarios and the different ways of intervening in energy systems. A key purpose of the module is to explore the significance and potential of technological change, drawing on different theories of innovation to assess the likely effects of emergent technologies. You will learn through lectures, 'hands on' workshops and lively class debates which will equip you with an in-depth understanding of energy system change and its role in addressing climate change.

ENV-7029B

20

ENVIRONMENTAL ASSESSMENT EFFECTIVENESS

Environmental Assessment is considered to be more effective when conducted at strategic levels of decision making, and is usually perceived to have a goal of achieving sustainable development. This module provides experience of conducting a particular form of strategic assessment, Sustainability Appraisal (SA), which incorporates environmental, social and economic considerations into plan making. Through practice of SA, a field course involving hands-on application of environmental assessment techniques, and consideration of effectiveness theory, this module will examine what makes assessment effective. Please note that there will be a charge for attending this field course (in the range of GBP300-GBP400) to cover attendance.

ENV-7021K

20

ENVIRONMENTAL POLLUTION - SCIENCE, POLICY AND MANAGEMENT

This module engages you in understanding complex interdisciplinary challenges associated with environmental pollution management via detailed studies of selected pollution issues. You will develop skills in quantifying and analysing problems and developing and presenting effective policy responses. Environmental pollution is a growing human footprint on the Earth system and is a contributing factor to major environmental challenges we face today, for example: provision of clean water; the sustainable production of safe food, and; mitigation of impacts on health human and ecological receptors. We will examine 3 major types of environmental pollution, involving the atmosphere, aquatic systems and soils, in depth. Your learning will come through lectures, seminars and self-directed study. There is also some practical work to help you to develop hands-on skills. The seminar discussions will give you the chance to discuss and debate your ideas on competing societal priorities, such as the conflicts between food production and the pollution arising from the use of fertilisers. The assessments are a short essay aimed at a general science audience (33%) and a report (67%). On successful completion of this module you will be able to evaluate complex arguments relating the chemistry and toxicology of pollutants to policy issues, political decisions and social perceptions of the environment. You will develop chemical understanding of pollutants as well as numerical skills and an understanding of how mathematical models assist in predictions of pollutant behaviour. You will also improve your communication of complex evidence and your ideas, empathise with other viewpoints and give balanced evaluation.

ENV-7030B

20

GEOENGINEERING THE CLIMATE: SCIENCE AND POLICY

Study a set of proposed techniques, collective known as geoengineering, that seek to modify the Earth's climate by reducing the degree of anthropogenic radiative forcing, either by reflecting more sunlight back to space or removing carbon dioxide from the atmosphere. This complex, controversial and highly uncertain area of science requires a strongly interdisciplinary approach. The potential role of geoengineering techniques as a complement to mitigation and adaptation in tackling future climate change raises a number of important questions - not least for international policy making - that you will explore.

ENV-7031A

20

SCIENCE, SOCIETY AND SUSTAINABILITY

How can science and society work better together to solve sustainability challenges? How can society be properly engaged and accounted for in addressing pressing issues like climate change, energy transitions and natural hazards? These questions, that lie at the core of this module, have become major concerns for scientists, governments, businesses, NGOs and citizens the world over. Throughout the module you will gain a rich appreciation of key theories, approaches and practical methods for understanding and improving relations between science, technology and society in sustainability settings. You'll explore the nature of science and how it relates to society. You'll discover a wealth of approaches for public engagement with science, and consider how sustainability can be more effectively governed. You'll also learn how to critically evaluate and communicate these ideas through written, oral and self-reflective means. You'll begin the module by considering how relations between science and society have evolved over time and are viewed differently by different disciplines. The fascinating interdisciplinary field called science and technology studies (STS) will provide a key resource that you will become an expert in as you progress. The module's three main parts will take you on a journey to develop your own critical insights. In part 1 you will consider the nature of science and its relation to society, through examining science controversies like 'climategate' and GM crops. In part 2 you will explore new forms of public engagement with science and technology, such as science communication, deliberative democracy, citizen science, and smart technologies in the home. In part 3 you will study pioneering new ways of governing science and sustainability in fairer and more socially responsible ways, through responsible innovation of climate geoengineering for example. You'll learn through a mixture of lectures, practical classes, in-class debates, and self-directed study. Your new knowledge and skills will be put into practice by creating a blog to communicate your ideas, as well as through written work and presentations. You'll also benefit from the module being taught by staff in the Science, Society and Sustainability (3S) Research Group, which houses some of the world's leading experts on societal engagement with sustainability.

ENV-7038B

20

STABLE ISOTOPE GEOCHEMISTRY

From supernovae and the early condensation of the solar system, through the climate history of the planet and on to studies of stratospheric chemistry, research using stable isotopes has made a significant contribution to our understanding of the processes that shape the Earth. You'll explore the theory and practice of isotope geochemistry, covering analytical methods and mass spectrometry, fractionation processes, and isotope behaviour in chemical cycles in the geosphere, hydrosphere, biosphere and atmosphere. Teaching is by a mix lectures, student led seminars and practicals, including hands-on experience in the stable isotope laboratory.

ENV-7024A

20

STATISTICS AND MODELLING FOR SCIENTISTS USING R

How do you test a hypothesis? How do you compare biological traits between wild populations? And how do you best test and visualise differences between samples? Scientists use a wide array of methods for statistical analysis and plotting data, and increasingly, these tasks are carried out using R. R is a free programming language for statistical computing and graphics, including general and generalised linear models, time-series analysis, and community analysis, and also specialised analyses in many scientific subfields. Learning R will equip you with a flexible statistical, modelling, and graphics tool. Learning the basics of running R in the RStudio programming environment, you'll spend most of your time on general and generalised linear models, which unify the range of statistical tests that are classically taught separately: t-test, ANOVA, regression, logistic regression, and chi-square, plus residuals analysis. Additionally, you'll learn how to use R to write simple programs and carry out community analyses such as principal components analysis. Finally, throughout the class, you'll learn R methods for data formatting, graphics, and documentation. On successful completion of this module you'll be able to use R to carry out and present results from the most widely used statistical tests in current scientific practice, giving you sufficient knowledge to continue learning statistical analysis on your own. A pre-requisite of first and/or second year statistical modules is required.

ENV-7033B

20

SUSTAINABLE CONSUMPTION

If everyone on Earth lived like a typical UK citizen we'd need three planets-worth of resources. But we only have one. Why do we consume the way we do? What drives our behaviour and how might we persuade people to live more sustainably? What do we mean by a sustainable lifestyle, anyway? These are questions academics, businesspeople, campaigners and policymakers struggle with every day and there are no easy answers. In this module you'll get to grips with competing visions about what sustainable consumption is. You'll gain an understanding of a range of theoretical approaches to understanding consumption behaviour and you'll learn how to apply these theories to develop strategies for achieving sustainable consumption. You'll begin by examining the impacts of western-style consumerism on the Earth's social, economic and environmental systems. Using concepts such as ecological footprinting, needs and wellbeing, you'll take a closer look at how economic and environmental systems interact. You'll contrast a 'green growth' approach to sustainable consumption with a more radical 'de-growth' model. Drawing on interdisciplinary social science theories from economics, psychology, sociology and ethnography, you'll go on to investigate a range of strategies for achieving change, by government, business, civil society, and individual consumers. You'll get hands-on experience testing and applying these ideas yourselves, in participative workshops, alongside award-winning innovative teaching methods. In lectures, you'll learn about topics such as Ethical Consumption, Limits to Growth, Collaborative Consumption, Community-based initiatives, Life Cycle Analysis and Behaviour-change campaigns. Understanding the theoretical debates behind everyday actions for sustainability will make you better able to design and implement sustainability strategies in the workplace - whether in the public or private sector, or civil society. You'll be able to identify the strengths and weaknesses in sustainable consumption campaigns and policies, and offer theoretically-informed solutions.

ENV-7025A

20

Disclaimer

Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. In some cases optional modules can have limited places available and so you may be asked to make additional module choices in the event you do not gain a place on your first choice. Where this is the case, the University will endeavour to inform students.

Further Reading

  • CELEBRATE 50 YEARS

    Find out about the impact UEA has made over the past 50 years

    Read it CELEBRATE 50 YEARS
  • Ask a Student

    This is your chance to ask UEA's students about UEA, university life, Norwich and anything else you would like an answer to.

    Read it Ask a Student
  • TOP 12 FACTS ABOUT THE SCHOOL

    Twelve things you need to know about the School of Environmental Sciences.

    Read it TOP 12 FACTS ABOUT THE SCHOOL
  • University Taster Events

    Come to one of our taster events and experience university life for yourself. Book now.

    Read it University Taster Events
  • UEA Award

    Develop your skills, build a strong CV and focus your extra-curricular activities while studying with our employer-valued UEA award.

    Read it UEA Award
  • HEAR FROM OUR STUDENTS

    Find out what it’s like to be a part of the School of Environmental Sciences at UEA.

    Read it HEAR FROM OUR STUDENTS

Entry Requirements

  • A Level AAB including Mathematics. Science A Levels must include a pass in the practical element.
  • International Baccalaureate 33 points including HL6 in Mathematics.
  • Scottish Advanced Highers BBC including Mathematics.
  • Irish Leaving Certificate 4 subjects at H2 and 2 subjects at H3 including Mathematics.
  • Access Course Pass the Access to HE Diploma with Distinction in 36 credits at Level 3 and Merit in 9 credits at Level 3 including 12 Level 3 credits in Mathematics.
  • BTEC DDD - Applied Science or Applied Science (Medical Science) preferred plus A Level Mathematics grade B
  • European Baccalaureate 80% overall including 70% in Mathematics.

Entry Requirement

A level Mathematics or equivalent.

General Studies and Critical Thinking not accepted.

You are required to have Mathematics and English Language at a minimum of Grade C/4 or above at GCSE.

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including writing, speaking, listening and reading|):

  • IELTS : 6.5 overall (minimum 6.0 in any component)

We also accept a number of other English language tests. Please click here to see our full list.

INTO University of East Anglia 

If you do not meet the academic and or English requirements for direct entry our partner, INTO University of East Anglia offers guaranteed progression on to this undergraduate degree upon successful completion of a preparation programme. Depending on your interests, and your qualifications you can take a variety of routes to this degree:

International Foundation in General Science FS1

International Foundation in Physical Sciences and Mathematics FS3 

Interviews

The majority of candidates will not be called for an interview and a decision will be made via UCAS Track. However, for some students an interview will be requested. You may be called for an interview to help the School of Study, and you, understand if the course is the right choice for you.  The interview will cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.  Where an interview is required the Admissions Service will contact you directly to arrange a convenient time. 

Gap Year

We welcome applications from students who have already taken or intend to take a gap year.  We believe that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and to contact admissions@uea.ac.uk directly to discuss this further.

Intakes

The School's annual intake is in September of each year.

  • A Level AAB including Mathematics. All Science A-Levels must include a pass in practical element
  • International Baccalaureate 33 points including HL6 in Maths and HL6 in one other subject. If no GCSE equivalent is held, offer will include Mathematics and English requirements.
  • Scottish Highers Only accepted in combination with Scottish Advanced Highers.
  • Scottish Advanced Highers BBC including Mathematics. A combination of Advanced Highers and Highers may be acceptable.
  • Irish Leaving Certificate AAAABB or 4 subjects at H1 and 2 at H2 including Mathematics
  • Access Course Pass Access to HE Diploma with Distinction in 36 credits at Level 3 and Merit in 9 credits at Level 3 including Distinction in 12 Level 3 credits in Mathematics
  • BTEC DDD in a related subject. Applied Science or Applied Science (Medical Science) preferred. Excluding Public Services on its own. BTEC and A-level combinations are considered - please contact us.
  • European Baccalaureate Overall 80% with 70% in Mathematics

Entry Requirement

GCSE Requirements:  GCSE English Language grade 4 and GCSE Mathematics grade 4 or GCSE English Language grade C and GCSE Mathematics grade C.  

General Studies and Critical Thinking are not accepted.  

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including speaking, listening, reading and writing) at the following level:

  • IELTS: 6.5 overall (minimum 6.0 in any component)

We will also accept a number of other English language qualifications. Review our English Language Equivalences here.

INTO University of East Anglia 

If you do not meet the academic and/or English language requirements for this course, our partner INTO UEA offers guaranteed progression on to this undergraduate degree upon successful completion of a foundation programme:

INTO UEA also offer a variety of English language programmes which are designed to help you develop the English skills necessary for successful undergraduate study:

 

Interviews

The majority of candidates will not be called for an interview. However, for some students an interview will be requested. These are normally quite informal and generally cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.


 

Gap Year

We welcome applications from students who have already taken or intend to take a gap year, believing that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and may wish to contact the appropriate Admissions Office directly to discuss this further.

Intakes

The School's annual intake is in September of each year.

Alternative Qualifications

We encourage you to apply if you have alternative qualifications equivalent to our stated entry requirement. Please contact us for further information.

Fees and Funding

Undergraduate University Fees and Financial Support

Tuition Fees

Information on tuition fees can be found here:

UK students

EU Students

Overseas Students

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. 

The University of East Anglia offers a range of Scholarships; please click the link for eligibility, details of how to apply and closing dates.

How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The system allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it must be sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The UCAS code name and number for the University of East Anglia is EANGL E14.

Further Information

If you would like to discuss your individual circumstances with the Admissions Service prior to applying please do contact us:

Undergraduate Admissions Service
Tel: +44 (0)1603 591515
Email: admissions@uea.ac.uk

Please click here to register your details via our Online Enquiry Form.

International candidates are also actively encouraged to access the University's International section of our website.

    Next Steps

    We can’t wait to hear from you. Just pop any questions about this course into the form below and our enquiries team will answer as soon as they can.

    Admissions enquiries:
    admissions@uea.ac.uk or
    telephone +44 (0)1603 591515