MSci Environmental Geophysics

Key facts

(2014 Research Excellence Framework)

Article

What’s really happening beneath our feet? Physicists and Environmental Scientists at UEA are using ingenious methods to work out exactly what’s flowing under the Earth’s surface, helping us to better understand earthquakes, volcanoes and the complex engine at the heart of our dynamic planet.

Read It

Article

What's it like living in the shadow of a volcano? UEA's Environmental Scientists have been working with communities in Latin America to reduce the impact of eruptions.

Read It

Video

The School of Environmental Sciences is one of the longest established, largest and most fully developed Schools of Environmental Sciences in Europe. Our holistic approach to teaching and research, integrating physical, chemical, biological, social and geotechnical sciences into the study of natural and human environments, is truly a modern philosophy for the new millennium.

Watch It

Key facts

(QS World Rankings 2016)

Article

Water Baby

What's making the antarctic melt? We've put robots into the ocean to unlock the complexities of warm water.

Read It

Video

View our video about Field Courses.

Watch It
This four-year course will give you advanced expertise in solid earth geophysics, placed in the context of the entire earth system. You’ll study the Earth’s many interacting processes, from the seas and skies to the deep interior, and learn about the way they control our environment.

This is a highly desirable degree due to the varied skills you’ll develop as well as the many industrial, governmental and academic applications the subject has. UEA is also one of the best places to study it – we’re ranked first in the UK for research impact (REF 2014) and have a global reputation for excellence in Environmental Sciences.

Your first year will provide you with the scientific tools you need, including Maths and Mechanics, while your second and third years will enable you to focus on diverse areas of study; from Oceanography and Meteorology to Geodynamics and Volcanology. Your final year culminates in an extended research project on a topic of your choice.

Overview

This exciting new four-year programme offers an integrated approach to studying planet Earth, including its interior, surface, oceans, atmosphere, interactions and external influences. You will be taught how to apply elements of mathematics, physics and computing in order to describe the earth’s properties, patterns and processes.

Environmental Geophysics embraces a rich variety of disciplines, including: solid earth geophysics, climatology, meteorology, oceanography, and volcanology, and many more. You will study the skies, seas and the Earth's deep interior, examining the surface to discover how the Earth has developed into what is seen today. Our course allows you to develop a quantitative, physical understanding of the whole earth system alongside the processes that control our environment.

The programme will enable you to develop a critical awareness of issues at the frontier of research, along with a comprehensive understanding of research methods and their limitations. You will gain the qualities of self-direction and originality in applying knowledge, solving problems and conducting research.

The MSci Environmental Geophysics is run jointly by the School of Environmental Sciences and the School of Mathematics, and in collaboration with the School of Computing Sciences. The programme provides a broad choice of subject material to engage with, yet allows specialisation in your field of special interest to an advanced level. You can bias your degree towards geological geophysics, geohazards, meteorology and climatology, oceanography or a combination. Overall this programme aims to inspire a lifelong interest, knowledge and understanding of the way the Earth works.

Field Course Options

Field courses and practical classes are an integral part of training our geophysical science students. You will be introduced to many different geological environments and learn to use a variety of technological equipment through the wide range of field courses available.

Course Structure

Whilst the first three years of the programme will follow the same profile as the BSc Geophysical Sciences, in the fourth and final year you will study a range of Master’s level modules. You also have the opportunity to undertake a substantial piece of independent research in a topic that matches your interests.

Year 1
A series of compulsory modules introduce you to the general scientific principles governing geophysics. Multi-disciplinary modules from the wider Faculty of Science prepare you with the essential analytical skills you will need during further years – including Maths for Scientists, Probability, Mechanics and Modelling.  

Year 2
As the course progresses you are given greater freedom to tailor your course around your own interests, choosing from a wide variety of modules, from Global Tectonics to Sedimentology. Compulsory modules continue to develop your mathematical knowledge.

Year 3
Your third year of study is centred around a large individual research project, allowing you to investigate a specialist area in professional depth. You will also study a range of advanced modules surrounding geophysical science as well as the wider social impacts of the subject, including Geophysical Hazards and Meteorology.

Year 4

In your final year, you'll undertake an in-depth research project that will enable you to put everything you've learnt into practice. You'll also have the choice of a range of more advanced modules, including field courses in Greece, Spain or Ireland, as well as topics in energy, climate science and fluid dynamics.

Assessment

A variety of assessment methods are used in different modules, ranging from 100% coursework to 100% examination, with the majority of modules being weighted 67% examination, 33% coursework. Coursework assessment methods include essays, written discussions, class tests, problem sheets, laboratory reports, field exercises and seminar presentations. Coursework and exam styles may also vary, promoting a variety of learning, recall and presentational skills.

Course Modules

Students must study the following modules for 100 credits:

Name Code Credits

GLOBAL ENVIRONMENTAL CHALLENGES

What are the most pressing environmental challenges facing the world today? How do we understand these problems through cutting-edge environmental science research? What are the possibilities for building sustainable solutions to address them in policy and society? In this module you will tackle these questions by taking an interdisciplinary approach to consider challenges relating to climate change, biodiversity, water resources, natural hazards, and technological risks. In doing so you will gain an insight into environmental science research 'in action' and develop essential academic study skills needed to explore these issues.

ENV-4001A

20

MATHEMATICS FOR SCIENTISTS A

This module covers differentiation, integration, vectors, partial differentiation, ordinary differential equations, further integrals, power series expansions, complex numbers and statistical methods. In addition to the theoretical background there is an emphasis on applied examples. Previous knowledge of calculus is assumed. This module is the first in a series of three maths modules for students across the Faculty of Science that provide a solid undergraduate mathematical training. The follow-on modules are Mathematics for Scientists B and C.

ENV-4015Y

20

PROBABILITY AND MECHANICS

(a) Probability. Probability as a measurement of uncertainty, statistical experiments and Bayes' theorem. Discrete and continuous distributions. Expectation. Applications of probability: Markov chains, reliability theory. (b) Mechanics. Discussion of Newton's laws of motion. Particle dynamics. Orbits. Conservation laws.

MTHB4007B

20

RESEARCH AND FIELD SKILLS

This module introduces a range of transferable skills, tools and data resources that are widely used in research across the Environmental Sciences and Geography. It aims to provide a broad understanding of the research process through activities that involve i) formulating research questions, ii) collecting data using appropriate sources and techniques, iii) collating and evaluating information and iv) presenting results. A week-long residential field course, held at Easter and based at Slapton Ley, Devon, applies field, lab and other skills to a variety of environmental science and geography topics.

ENV-4004Y

20

UNDERSTANDING THE DYNAMIC PLANET

Understanding of natural systems is underpinned by physical laws and processes. This module explores energy, mechanics, physical properties of Earth materials and their relevance to environmental science using examples from across the Earth's differing systems. The formation, subsequent evolution and current state of our planet are considered through its structure and behaviour - from the planetary interior to the dynamic surface and into the atmosphere. Plate Tectonics is studied to explain Earth's physiographic features - such as mountain belts and volcanoes - and how the processes of erosion and deposition modify them. The distribution of land masses is tied to global patterns of rock, ice and soil distribution and to atmospheric and ocean circulation. We also explore geological time - the 4.6 billion year record of changing conditions on the planet - and how geological maps can used to understand Earth history. This course provides an introduction to geological materials - rocks, minerals and sediments - and to geological resources and natural hazards.

ENV-4005A

20

Students will select 20 credits from the following modules:

Students will be assigned to 20 credits from the following units. Assignments will be made according to previous Chemistry qualifications.

Name Code Credits

PHYSICAL AND CHEMICAL PROCESSES IN THE EARTH'S SYSTEM I

The habitability of planet Earth depends on the physical and chemical systems on the planet which control everything from the weather and clim ate to the growth of all living organisms. This module aims to introduce you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret these systems. The module will lead many of you on to second and third year courses (and beyond) studying these systems in more detail, but even for those of you who choose to study other aspects of environmental sciences a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The course has two distinct components, one on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) and one on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). During the course of the module the teachers will also emphasise the inter-relationships between these two sections This course is taught in two variants: this module provides a Basic Chemistry introduction for those students who have little or no background in chemistry before coming to UEA (see pre-requisites). This course will run throughout semester 2 involving a mixture of lectures, laboratory practical classes, workshops and a half day field trip.

ENV-4007B

20

PHYSICAL AND CHEMICAL PROCESSES IN THE EARTH'S SYSTEM II

The habitability of planet Earth depends on the physical and chemical systems on the planet which control everything from the weather and climate to the growth of all living organisms. This module aims to introduce you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret these systems. The module will lead many of you on to second and third year courses (and beyond) studying these systems in more detail, but even for those of you who choose to study other aspects of environmental sciences a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The course has two distinct components, one on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) and one on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). During the course of the module the teachers will also emphasise the inter-relationships between these two sections This module is for students with previous experience of chemistry. This course will run throughout semester 2 involving a mixture of lectures, laboratory practical classes, workshops and a half day field trip.

ENV-4008B

20

Students must study the following modules for 60 credits:

Name Code Credits

APPLIED GEOPHYSICS

What lies beneath our feet? This module addresses this question by exploring how wavefields and potential fields are used in geophysics to image the subsurface on scales of metres to kilometres. The basic theory, data acquisition and interpretation methods of seismic, electrical, gravity and magnetic surveys are studied. A wide range of applications is covered including archaeological geophysics, energy resources and geohazards. This module is highly valued by employers in industry; guest industrial lecturers will cover the current 'state-of-the-art' applications in real world situations. Students doing this module are normally expected to have a good mathematical ability, notably in calculus and algebra before taking this module (ENV-4015Y Mathematics for Scientists A or equivalent).

ENV-5004B

20

APPLIED GEOPHYSICS WITH FIELDCOURSE

What lies beneath our feet? This module addresses this question by exploring how waves, rays and the various physical techniques are used in geophysics to image the subsurface on scales of meters to kilometres. The basic theory and interpretation methods of seismic, electrical and gravity and magnetic surveys are studied. A wide range of applications is covered including archaeological geophysics, energy resources and geohazards. The fieldcourse provides "hands-on" experience of the various techniques and applications, adding on valuable practical skills. This module is highly valued by employers in industry; guest industrial lecturers will cover the current 'state-of-the-art' applications in real world situations. Students doing this module are normally expected to have a good mathematical ability, notably in calculus and algebra before taking this module (ENV-4015Y Mathematics for Scientists A or equivalent). RESIDENTIAL FIELDCOURSE: This module includes a one-week fieldcourse and is presently held in the Lake District during the Easter break. There will be a charge for attending this field course. The cost is heavily subsidised by the School, but students enrolling must understand that they will commit to paying a sum to cover attendance. As the details of many modules and field courses have changed recently, the following figures should be viewed as ball-park estimates only. If you would like firmer data please consult the module organiser closer to the field course. The cost to the student will be on the order of GBP150.

ENV-5005K

20

INDEPENDENT PROJECT - PROPOSAL

ENV-6021B

0

MATHEMATICS FOR SCIENTISTS B

This module is the second in a series of three mathematical modules for students across the Faculty of Science. It covers vector calculus (used in the study of vector fields in subjects such as fluid dynamics and electromagnetism), time series and spectral analysis (a highly adaptable and useful mathematical technique in many science fields, including data analysis), and fluid dynamics (which has applications to the circulation of the atmosphere, ocean, interior of the Earth, chemical engineering, and biology). There is a continuing emphasis on applied examples.

MTHB5006A

20

MATHEMATICS FOR SCIENTISTS C

MTHB5007B

20

Students will select 0 - 40 credits from the following modules:

Name Code Credits

GIS SKILLS FOR PROJECT WORK

This module builds upon the introduction to GIS provided in the first year Research and Field Skills module, focusing on how students can obtain their own data, integrate it together and then undertake analysis and presentation tasks. ESRI ArcGIS will be the main software used, but there will also be an introduction to scripting tools (Python) and open source software (QGIS). Teaching will consist of a one-hour lecture and a three-hour practical class each week. Students should expect to spend a significant amount of time outside of scheduled classes on their formative and summative coursework.

ENV-5028B

20

OCEAN CIRCULATION

This module gives you an understanding of the physical processes occurring in the basin-scale ocean environment. We will introduce and discuss large scale global ocean circulation, including gyres, boundary currents and the overturning circulation. Major themes include the interaction between ocean and atmosphere, and the forces which drive ocean circulation. You should be familiar with partial differentiation, integration, handling equations and using calculators. Shelf Sea Dynamics is a natural follow-on module and builds on some of the concepts introduced here. We strongly recommend that you also gain oceanographic fieldwork experience by taking the 20-credit biennial Marine Sciences fieldcourse.

ENV-5016A

20

Students will select 0 - 40 credits from the following modules:

(20 credits in SEM1 and 20 credits in SEM2)

Name Code Credits

EARTH SCIENCE LAB SKILLS

Good observational and descriptive skills lie at the heart of many areas of Environmental Science. This module is designed to develop those and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects in this area. The module will include: observing, describing and recording the characteristics of geological materials (hand specimen and under microscope); measuring and representing 3d data, and reading geological maps.

ENV-5029B

20

EARTH SCIENCE SKILLS

This module is designed to develop good observational and descriptive skills and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects. The module will include: observing, describing and recording the characteristics of geological materials (in the field, in hand specimen and under microscope); measuring and representing 3d data, reading geological maps and basic geological mapping. The module includes a week-long residential field work in the Easter vacation which has an added cost implication in the region of GBP250.

ENV-5030B

20

GLOBAL TECTONICS

Processes in the Earth's interior have exerted a profound influence on all aspects of the Earth's system through geological time. This module is designed to explore all aspects of those processes from the creation and destruction of tectonic plates to the structure of the Earth's interior and the distribution and dissipation of energy within it. This will include: the theory and mechanisms of plate tectonics, the generation of magma and volcanism; the mechanisms behind earthquakes. The geological record of this activity, its evolution and impacts on the Earth will also be discussed.

ENV-5018A

20

Students will select 0 - 20 credits from the following modules:

MTHD6018B Dynamical Meteorology and MTHE6007B Dynamical Oceanography will run in alternate years. Students must check that the module chosen from this range does not have a timetable clash with modules already selected, noting that no more than one module with the same timetable slot e.g.EE can be taken in one semester.

Name Code Credits

HYDROLOGY AND HYDROGEOLOGY

Hydrology and hydrogeology are Earth Science subjects concerned with the assessment of the natural distribution of water in time and space and the evaluation of human impacts on the water. This module provides an introduction to geological controls on groundwater occurrence, aquifer characteristics, basic principles of groundwater flow, basic hydrochemistry, an introduction to catchment hydrology, hydrological data collection and analysis, runoff generation processes and the principles of rainfall-runoff modelling. Practical classes develop analytical skills in solving problems as well as field skills in pumping test analysis and stream gauging. A field excursion in Norfolk is also offered in this module.

ENV-5021A

20

LOW CARBON ENERGY

This module examines the physical/chemical principles of energy science and technologies - from clean energy generation and conversion, such as renewables, bioenergy, batteries, and hydrogen and fuel cells. It provides a systematic and integrated account of scientific/technical issues of the energy resources and conversion. The knowledge is used to make rational analyses of energy availability, applications and selections from physical, technical and environmental considerations. It also provides students with the opportunity to explore the future of energy provision in greater depth in practical sessions. These include invited talks, energy debates and group discussions on the applications of low carbon energy technologies.

ENV-5022B

20

METEOROLOGY I

This module is designed to give a general introduction to meteorology, concentrating on the physical processes in the atmosphere and how these influence our weather. The module contains both descriptive and mathematical treatments of radiation balance, fundamental thermodynamics, dynamics, boundary layers, weather systems and meteorological hazards. The assessment is designed to allow those with either mathematical or descriptive abilities to do well; however a reasonable mathematical competence is essential, including a basic understanding of differentiation and integration.

ENV-5008A

20

SEDIMENTOLOGY

Sedimentary rocks cover much of the Earth's surface, record the Earth's history of environmental change, contain the fossil record and host many of the world's natural resources. This module includes the study of modern sediments such as sand, mud and carbonates and the processes that result in their deposition. Understanding of modern processes is used to interpret ancient sedimentary rocks, their stratigraphy and the sedimentary structures they contain.

ENV-5035B

20

SHELF SEA DYNAMICS AND COASTAL PROCESSES

The shallow shelf seas that surround the continents are the oceans that we most interact with. They contribute a disproportionate amount to global marine primary production and CO2 drawdown into the ocean, and are important economically through commercial fisheries, offshore oil and gas exploration, and renewable energy developments (e.g. offshore wind farms). This module explores the physical processes that occur in shelf seas and coastal waters, their effect on biological, chemical and sedimentary processes, and how they can be harnessed to generate renewable energy.

ENV-5017B

20

Students must study the following modules for 60 credits:

Name Code Credits

INDEPENDENT PROJECT

This module is compulsory for all degree courses in the School of Environmental Sciences and is an independent piece of research. With guidance from a supervisor, each student chooses a topic, designs the research and collects, analyses and interprets data. The student is expected to report on progress at various stages: in the selection of a topic, the detailed plan, an interim report and an oral presentation. A final report in the form of a dissertation not exceeding 10,000 words is required. When planning the project and again after completing the report, students reflect on the range of subject-specific and generic skills acquired through their degree and how these are reinforced and complemented by skills acquired through their project. A final item of summative work assesses the clarity by which the student communicates and evidences their range of skills in the form of a covering letter and cv for a potential job application. To further support the transition to employment students can present a formative research poster that summarises the main aspects of the work to prospective employers.

ENV-6021A

40

MODELLING ENVIRONMENTAL PROCESSES

The aim of the module is to show how environmental problems may be solved from the initial problem, to mathematical formulation and numerical solution. Problems will be described conceptually, then defined mathematically, then solved numerically via computer programming. The module consists of lectures on numerical methods and computing practicals (using Matlab); the practicals being designed to illustrate the solution of problems using the methods covered in lectures. The module will guide students through the solution of a model of an environmental process of their own choosing. The skills developed in this module are highly valued by prospective employers.

ENV-6004A

20

Students will select 0 - 40 credits from the following modules:

(20 credits in SEM1 and 20 credits in SEM2)

Name Code Credits

ADVANCED STATISTICS

This module covers two topics in statistical theory: Linear and Generalised Linear models and also includes Stochastic processes. The first two topics consider both the theory and practice of statistical model fitting and students will be expected to analyse real data using R. Stochastic processes including the random walk, Markov chains, Poisson processes, and birth and death processes.

CMP-6004A

20

CATCHMENT WATER RESOURCES

This module will adopt an integrated approach to studying surface water and groundwater resources in river basins to enable students to analyse aspects of land management that affect catchment water resources and ecosystems.

ENV-6018B

20

NATURAL RESOURCES AND ENVIRONMENTAL ECONOMICS

This module introduces some key principles of economics for students who have not studied the subject previously. It then explores how these principles can be applied to address a number of economy-environment problems including air pollution and over-fishing. The framework of cost-benefit analysis as a framework for decision-making is also introduced.

ENV-6012B

20

Students will select 0 - 40 credits from the following modules:

(20 credits in SEM1 and 20 credits in SEM2).

Name Code Credits

FOSSIL FUELS

Geological, economic and political aspects of fossil fuels (oil, natural gas and coal) are introduced. These are used to discuss environmental concerns arising from the use of fossil fuels, and the potentially profound implications of future fuel scarcity on society. This module is suitable for students taking degrees in the School of Environmental Sciences. It can also be taken by students doing the Energy Engineering With Environmental Manageement course in the School of Mathematics. Some knowledge of Earth science and basic Chemistry will be expected.

ENV-6009A

20

GEOPHYSICAL HAZARDS

Geophysical hazards such as earthquakes, volcanic eruptions, tsunamis and landslides have significant environmental and societal impacts. This module focuses on the physical basis and analysis of each hazard, their global range of occurrence, probability of occurrence and their local and global impact. The module addresses matters such as hazard monitoring, modelling and assessment. The module considers approaches towards risk mitigation and the reduction of vulnerability (individual and societal), with an emphasis on their practical implementation. Scenarios and probabilities of mega-disasters are also investigated. All the teaching faculty involved have practical experience of supplying professional advice on these hazards (and related risks) in addition to their own research involvement. A basic knowledge of physical science and of mathematics is assumed e.g. use of logs, exponentials, powers, cosines, rearrangement of equations.

ENV-6001B

20

Students will select 0 - 20 credits from the following modules:

Students must submit a request to the School for a place on a field course.

Name Code Credits

GEOSCIENCES FIELDCOURSE: GREECE

This field course is designed to promote a deeper understanding and integration of geoscience subjects: the fieldwork will usually concentrate on applied skills in aspects of structural geology, regional tectonics, sedimentology, palaeoclimate and palaeoenvironments, and volcanology. There are two field bases in the Aegean (Greece), the Gulf of Corinth active rift, and Santorini volcano.

ENV-6022K

20

PALAEOCLIMATOLOGY

This module examines the geological evidence for climatic change through the Quaternary Period (the last 2.6 million years) and the longer-term evolution of climate through the Cenozoic Era (the last 65 million years). The interpretation and causal mechanisms behind these major global environmental changes are explored using a diverse range of approaches - isotope geochemistry, sedimentology, palaeoecology and organic geochemistry. We focus on geochemical, biological and sedimentological information obtained from marine sediments, ice cores, and terrestrial environments and use these records to reconstruct the timing extent and magnitude of selected climatic events as expressed through changes in the geological record.

ENV-6017B

20

Students will select 0 - 20 credits from the following modules:

Students must check that the module chosen from this range does not have a timetable clash with modules already selected, noting that no more than one module with the same timetable slot e.g.EE can be taken in one semester. NOTE: No more than 20 credits of level 5 modules can be taken at Stage 3.

Name Code Credits

APPLIED STATISTICS A

This is a module designed to give students the opportunity to apply statistical methods in realistic situations. While no advanced knowledge of probability and statistics is required, we expect students to have some background in probability and statistics before taking this module. The aim is to teach the R statistical language and to cover 3 topics: Linear regression, and Survival Analysis.

CMP-5017B

20

EARTH SCIENCE LAB SKILLS

Good observational and descriptive skills lie at the heart of many areas of Environmental Science. This module is designed to develop those and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects in this area. The module will include: observing, describing and recording the characteristics of geological materials (hand specimen and under microscope); measuring and representing 3d data, and reading geological maps.

ENV-5029B

20

EARTH SCIENCE SKILLS

This module is designed to develop good observational and descriptive skills and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects. The module will include: observing, describing and recording the characteristics of geological materials (in the field, in hand specimen and under microscope); measuring and representing 3d data, reading geological maps and basic geological mapping. The module includes a week-long residential field work in the Easter vacation which has an added cost implication in the region of GBP250.

ENV-5030B

20

ENERGY AND PEOPLE

This module will introduce students to a range of social science perspectives on the inter-relationships between energy and people. The module begins by tracing the history and development of energy intensive societies and everyday lives as a means of understanding how energy has emerged as a key sustainability problem. The second part of the module then introduces some theories of social and technical change and uses these to critically analyse a range of people-based solutions to energy problems - including behaviour change initiatives, domestic energy efficiency technologies, and community-scale renewables - that are currently being tried and tested around the world. TEACHING AND LEARNING The module is taught through a combination of lectures and seminars involving group projects, peer discussions, practical exercises and student-led learning. The lectures (2 per week) will introduce students to some core theoretical ideas about the relationships between energy and people, as well as examining a series of people-based solutions to energy problems that have been attempted around the world. The seminar sessions (1 per week) will give students the opportunity to engage with the lecture content in more depth through a range of exercises designed to promote discussion with both course lecturers and peers. Essential readings will be identified for each lecture. To do well in the module students will need to demonstrate that they have engaged extensively with the literature in this area, particularly regarding the 'real world' implications of theoretical ideas and debates. CAREER PROSPECTS Contemporary energy problems are a key concern of central and local government policy, business activities, charity and community work and wider public debates. A key reason why existing solutions to these problems either fail or are not as effective as at first assumed, is that they are often based on a poor understanding of how people use and engage with energy in the course of their everyday lives. Improving students' understanding of the relationships between energy and people and providing them with the intellectual tools necessarily to critically assess energy problems and potential solutions will therefore give them with a significant advantage in this growing job market. In addition to enhancing employability in the specific area of energy, this module will also provide students with a range of key transferable skills that will help them secure gainful employment on completion of their undergraduate degree. These include: developing analytical and critical thinking skills; understanding how to work effectively in teams; advocacy and negotiation skills; developing creative approaches to presentation; and presenting work to different audiences.

ENV-6026B

20

GLOBAL TECTONICS

Processes in the Earth's interior have exerted a profound influence on all aspects of the Earth's system through geological time. This module is designed to explore all aspects of those processes from the creation and destruction of tectonic plates to the structure of the Earth's interior and the distribution and dissipation of energy within it. This will include: the theory and mechanisms of plate tectonics, the generation of magma and volcanism; the mechanisms behind earthquakes. The geological record of this activity, its evolution and impacts on the Earth will also be discussed.

ENV-5018A

20

HYDROLOGY AND HYDROGEOLOGY

Hydrology and hydrogeology are Earth Science subjects concerned with the assessment of the natural distribution of water in time and space and the evaluation of human impacts on the water. This module provides an introduction to geological controls on groundwater occurrence, aquifer characteristics, basic principles of groundwater flow, basic hydrochemistry, an introduction to catchment hydrology, hydrological data collection and analysis, runoff generation processes and the principles of rainfall-runoff modelling. Practical classes develop analytical skills in solving problems as well as field skills in pumping test analysis and stream gauging. A field excursion in Norfolk is also offered in this module.

ENV-5021A

20

LOW CARBON ENERGY

This module examines the physical/chemical principles of energy science and technologies - from clean energy generation and conversion, such as renewables, bioenergy, batteries, and hydrogen and fuel cells. It provides a systematic and integrated account of scientific/technical issues of the energy resources and conversion. The knowledge is used to make rational analyses of energy availability, applications and selections from physical, technical and environmental considerations. It also provides students with the opportunity to explore the future of energy provision in greater depth in practical sessions. These include invited talks, energy debates and group discussions on the applications of low carbon energy technologies.

ENV-5022B

20

METEOROLOGY I

This module is designed to give a general introduction to meteorology, concentrating on the physical processes in the atmosphere and how these influence our weather. The module contains both descriptive and mathematical treatments of radiation balance, fundamental thermodynamics, dynamics, boundary layers, weather systems and meteorological hazards. The assessment is designed to allow those with either mathematical or descriptive abilities to do well; however a reasonable mathematical competence is essential, including a basic understanding of differentiation and integration.

ENV-5008A

20

METEOROLOGY II

This module will build upon material covered in ENV-5008A by covering topics such as synoptic meteorology, weather hazards, micro-meteorology, further thermodynamics and weather forecasting. The module includes a major summative coursework assignment based on data collected on a UEA meteorology fieldcourse in a previous year.

ENV-5009B

20

METEOROLOGY II WITH FIELDCOURSE

This module will build upon material covered in ENV-5008A by covering topics such as synoptic meteorology, weather hazards, micro-meteorology, further thermodynamics and weather forecasting. The module also includes a week long Easter vacation residential fieldcourse, based in the Lake District, involving students in designing scientific experiments to quantify the effects of micro- and synoptic-scale weather and climate processes, focusing on lake, forest and mountain environments. There will be a charge to students in the order of GBP160 for attending this fieldcourse which is also heavily subsidized by the School.

ENV-5010K

20

OCEAN CIRCULATION

This module gives you an understanding of the physical processes occurring in the basin-scale ocean environment. We will introduce and discuss large scale global ocean circulation, including gyres, boundary currents and the overturning circulation. Major themes include the interaction between ocean and atmosphere, and the forces which drive ocean circulation. You should be familiar with partial differentiation, integration, handling equations and using calculators. Shelf Sea Dynamics is a natural follow-on module and builds on some of the concepts introduced here. We strongly recommend that you also gain oceanographic fieldwork experience by taking the 20-credit biennial Marine Sciences fieldcourse.

ENV-5016A

20

PROGRAMMING FOR NON-SPECIALISTS

The purpose of this module is to give the student a solid grounding in the essential features programming using the Java programming language. The module is designed to meet the needs of the student who has not previously studied programming.

CMP-5020B

20

SEDIMENTOLOGY

Sedimentary rocks cover much of the Earth's surface, record the Earth's history of environmental change, contain the fossil record and host many of the world's natural resources. This module includes the study of modern sediments such as sand, mud and carbonates and the processes that result in their deposition. Understanding of modern processes is used to interpret ancient sedimentary rocks, their stratigraphy and the sedimentary structures they contain.

ENV-5035B

20

SHELF SEA DYNAMICS AND COASTAL PROCESSES

The shallow shelf seas that surround the continents are the oceans that we most interact with. They contribute a disproportionate amount to global marine primary production and CO2 drawdown into the ocean, and are important economically through commercial fisheries, offshore oil and gas exploration, and renewable energy developments (e.g. offshore wind farms). This module explores the physical processes that occur in shelf seas and coastal waters, their effect on biological, chemical and sedimentary processes, and how they can be harnessed to generate renewable energy.

ENV-5017B

20

Students must study the following modules for 60 credits:

Name Code Credits

RESEARCH TRAINING PROJECT

This year long module involves individual research in the environmental sciences with the topic suggested by and closely directed by a supervisor. The work will develop research skills through learning by doing and will be presented as a seminar and in the form of a research paper. The project differs from Year 3 project in requiring greater time and higher expected standards of research design and application of data. This module is restricted to UG students on the MSci programme only.

ENV-7026Y

60

Students will select 0 - 20 credits from the following modules:

Name Code Credits

GEOSCIENCES FIELDCOURSE: GREECE

THIS MODULE IS ONLY AVAILABLE TO INTEGRATED MASTERS (MSci STUDENTS) This field course is designed to promote a deeper understanding and integration of geoscience subjects: the fieldwork will usually concentrate on applied skills in aspects of structural geology, regional tectonics, sedimentology, palaeoclimate and palaeoenvironments, and volcanology. A key feature of the course is the excellent quality of exposure which are studied to develop skills in observation, methods for recording observations, and interpreting these in terms of earth systems processes. There are two field bases in the Aegean (Greece), the Gulf of Corinth active rift, and Santorini volcano. This 10 day field course is likely to take place in mid- to end-June 2017. (The Geosciences field course in 2016 and 2018 is to Spain, see ENV-6029K/7039K). Gulf of Corinth: the first four days progressively introduce mapping of active faults, development of fault systems, determine rates at which deformation of Earth's crust occurs (uplift rates) through study of marine and near shore- facies and the geometry of sedimentary units, intertwined with this is a palaeoclimate record. There are two days independent mapping that practice the skills developed through the previous four days. Santorini: four days studying subduction-related volcanism from rhyolitic tephra to dacite and basaltic lava. There are three days around the magnificent deposits exposed in the caldera walls which formed by accumulation of deposits from large-scale explosive eruptions and periods of effusive lava flows. The fourth day is on Nea Kameni the active centre that is emergent in the middle of the flooded caldera. The approximate cost to the student is expected to be ~GBP450 (though much depends on the Greece currency exchange rate). This includes BandB, flights, and travel in Greece. Enrolment on this module is in response to emails inviting students to express interest in the module in October 2016 of year prior to the running of the field course, and is capped at 30 students. The module may be taken at the beginning, or the end, of a year out (Year In Industry, Year Abroad).

ENV-7028K

20

Students will select 0 - 20 credits from the following modules:

Name Code Credits

CLIMATE CHANGE: PHYSICAL SCIENCE BASIS

Climate change and variability have played a major role in shaping human history, and the prospect of a warming world as a result of human activities (principally via changing atmospheric composition) is a pressing challenge for society. This module covers the science of climate change and our current understanding of anthropogenic effects on climate. It provides details about the approaches, methods and techniques for understanding the history of climate change and for developing climate projections for the next 100 years, supporting further study of the scientific or policy aspects of the subject in either an academic or applied context.

ENV-7014A

20

ENERGY ENGINEERING FUNDAMENTALS

This module includes an induction team exercise designed to give an overview of both the renewable energy sources (wind, wave, tidal, solar) and non-renewable energy sources (oil, gas, coal, nuclear). The module begins with a team-based study of a specific challenge culminating in a presentation to industry specialists. A significant part of the module concentrates on engineering mathematics related to energy engineering and includes fluid mechanics and thermodynamics. This module is only available to postgraduate students on masters programmes.

ENG-7001A

20

RESEARCH TOPICS IN EARTH SCIENCE

The module allows engagement in Earth science topics at an advanced level and involves advanced study skills. The module will be strongly research lead and based around student-centred learning. It will involve a) engagement with appropriate research seminars in the School of Environmental Sciences and b) directed research on key topics with discussions and student seminars. The topics included vary from year to year but they are likely to include topics in sedimentology, palaeoclimate, geological hazards, Earth history, the Earth system. The module will develop students' research and communication skills in addition to imparting specialist knowledge.

ENV-7018A

20

Students will select 0 - 40 credits from the following modules:

(20 credits in SEM1 and 20 credits in SEM2)

Name Code Credits

GIS AND ITS APPLICATIONS FOR MODELLING ECOLOGICAL AND ENVIRONMENTAL CHANGE

This module will provide essential GIS tools and principles that will be applied to modelling ecological responses to environmental change. Core GIS skills will be delivered. These include field data collection and extraction of data from national and global databases. It will include the manipulation of such files and particular attention will be paid to understanding the uncertainties associated with such analyses. These skills are important in many areas of ecological research, but are particularly useful for the creation of variables needed for modelling environmental change. There will be extensive emphasis on practical GIS skills delivered using the ArcGIS software.

ENV-7034A

20

OIL AND GAS ENGINEERING

The aim of this module is to expose students to the technical and commercial realities of production and supply of oil and gas including both upstream and downstream aspects. An overview of the subject leads to a number of specific case studies provided by practising engineers. A number of assessment techniques are used, from numerical analysis to research for a briefing document and debates. There will be some team-based elements. What follows is indicative because each year the case studies will reflect the expertise of the visiting practising engineers.

ENG-7012A

20

STATISTICS AND MODELLING FOR SCIENTISTS USING R

R is a free software environment for statistical computing and graphics that has rapidly gained popularity among scientists and is now the most commonly used software tool in several environmental sciences. R provides a variety of statistical techniques (including general and generalised linear models, classical hypothesis testing, time-series analysis, community analysis, etc.). One of R's strengths is the capacity to produce publication-quality figures, including mathematical symbols and formulae. Using the R software as a platform will equip students with a flexible statistical and modelling tool, and the "R way of statistics" greatly facilitates the understanding of modelling and statistics.

ENV-7033B

20

Students will select 0 - 40 credits from the following modules:

Note that no more than one module with the same timetable slot e.g.EE can be taken in one semester

Name Code Credits

APPLIED STATISTICS

This is a module designed to give students the opportunity to apply statistical methods in realistic situations. While no advanced knowledge of probability and statistics is required, we expect students to have some background in probability and statistics before taking this module. The aim is to teach the R statistical language and to cover 3 topics: Linear regression, ANOVA, and Survival Analysis.

CMP-7008B

20

WAVE, TIDAL AND HYDRO ENERGY ENGINEERING

This module studies renewable energy sources that use the energy stored in water to produce electrical energy. An examination is made into the potential energy and kinetic energy stored in water, either implicitly through waves/tide or explicitly in hydro. Devices for energy extraction from waves are examined but an essential focus is on wave forces on structures. Tidal energy extraction devices including barrages, agoons and tidal strem turbines are also studied. The design and operation of hydroelectric turbines is studied with a particular focus on pipe flow and pipe networks using commercial software.

ENG-7004B

20

WIND ENERGY ENGINEERING

Wind energy is the main provider of renewable energy and the source that is receiving the majority of investment, making its study vital to energy engineering. This module begins by examining the kinetic energy of moving air and the design of wind turbines to extract this energy. Different turbine designs are briefly examined and comparisons made of their effectiveness. Issues regarding placement of wind turbines and practical considerations are discussed and include data collection of wind speeds for possible wind farm sites using optimal spacing of turbines. The focus is on developing Excel skills using wind energy as the context.

ENG-7003B

20

Disclaimer

Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. Where this is the case, the University will endeavour to inform students.

Entry Requirements

  • A Level AAB including Mathematics.
  • International Baccalaureate 33 points including HL Mathematics at 6 and one other HL subject at 6
  • Scottish Advanced Highers AAB including Mathematics
  • Irish Leaving Certificate AAAABB or 4 subjects at H1, 2 at H2 including Mathematics
  • Access Course Pass Access to HE Diploma with Distinction in 36 credits at Level 3 and Merit in 9 credits at Level 3, including 12 Level 3 Maths credits.
  • BTEC DDD in a relevant subject area.
  • European Baccalaureate 80% overall with at least 70% in Maths

Entry Requirement

A level Mathematics or equivalent.

General Studies and Critical Thinking are not accepted.

You are required to have Mathematics and English Language at a minimum of Grade C or Grade 4 or above at GCSE Level.

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including writing, speaking, listening and reading):

  • IELTS : 6.5 overall (minimum 6.0 in any component)

We also accept a number of other English language tests. Please click here to see our full list.

INTO University of East Anglia 

If you do not meet the academic and or English requirements for direct entry our partner, INTO University of East Anglia offers guaranteed progression on to this undergraduate degree upon successful completion of a preparation programme. Depending on your interests, and your qualifications you can take a variety of routes to this degree:

International Foundation in General Science FS1

International Foundation in Pharmacy, Biomedicine and Health FS2

International Foundation in Physical Sciences and Mathematics FS3 

Interviews

The majority of candidates will not be called for an interview and a decision will be made via UCAS Track. However, for some students an interview will be requested. You may be called for an interview to help the School of Study, and you, understand if the course is the right choice for you.  The interview will cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.  Where an interview is required the Admissions Service will contact you directly to arrange a convenient time. 

Gap Year

We welcome applications from students who have already taken or intend to take a gap year.  We believe that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and to contact admissions@uea.ac.uk directly to discuss this further.

Intakes

The School's annual intake is in September of each year.

Fees and Funding

Undergraduate University Fees and Financial Support: Home and EU Students

Tuition Fees

Please see our webpage for further information on the current amount of tuition fees payable for Home and EU students and for details of the support available.

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. 

Home/EU - The University of East Anglia offers a range of Bursaries and Scholarships.  To check if you are eligible please visit 

______________________________________________________________________

Undergraduate University Fees and Financial Support: International Students

Tuition Fees

Please see our webpage for further information on the current amount of tuition fees payable for International Students.

Scholarships

We offer a range of Scholarships for International Students – please see our website for further information.

 


 

How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The system allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it must be sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The UCAS code name and number for the University of East Anglia is EANGL E14.

Further Information

If you would like to discuss your individual circumstances with the Admissions Service prior to applying please do contact us:

Undergraduate Admissions Service
Tel: +44 (0)1603 591515
Email: admissions@uea.ac.uk

Please click here to register your details via our Online Enquiry Form.

International candidates are also actively encouraged to access the University's International section of our website.

    Next Steps

    We can’t wait to hear from you. Just pop any questions about this course into the form below and our enquiries team will answer as soon as they can.

    Admissions enquiries:
    admissions@uea.ac.uk or
    telephone +44 (0)1603 591515