MMath Master of Mathematics (with a Year Abroad)


Attendance
Full Time
Award
Degree of Master of Mathematics



A-Level typical
AAB (2020/1 entry) See All Requirements
Visit Us

Video

The School has a strong international reputation for its research and students are taught by leading experts in a broad range of topics in Mathematics.

Watch It

Video

Find out what it’s like to be a part of the School of Mathematics at UEA.

Watch It

Article

Our mathematicians have shown how crucial oceans are for sustaining life on distant planets, bringing us one step closer to finding somewhere aliens could call home.

Read It
Our four-year integrated Masters course is ideal if you want to take your studies to the next level and prepare to work in academia or research. Going into greater depth than our three-year BSc programme, it’s a flexible course that allows you to specialise in either pure or applied mathematics, or a combination of the two.

           
On our Year Abroad programme you’ll have the opportunity to spend a year broadening your mathematical knowledge and experiencing a different lifestyle and culture by studyingat one of our partner universities across North America and Australasia. You’ll then return to UEA to undertake a substantial final year research project.

At UEA you’ll benefit from internationally recognised, research-led teaching and a high academic staff to student ratio, so you’ll graduate with a deep understanding of mathematics – and fantastic career prospects.

Overview

Our prestigious four-year Master of Mathematics degree programme will allow you to delve deeper and really develop your interests in pure and applied mathematics.

You’ll spend your third year studying advanced mathematics modules at one of our partner universities overseas. It’s a fantastic experience personally, socially and culturally, and it will also give you the chance to study in a department where different aspects of mathematics are taught. Plus it’s a great way to build contacts and show future employers your resilience and adaptability.

One of the key advantages of studying with us is that our flexible course format will enable you to decide whether you want to focus on pure mathematics, applied mathematics, or a combination of the two. And – as well as engaging in the study of essential mathematical theory and technique – you’ll have the opportunity to carry out a substantial research project in your final year. The project is designed to not only allow you to experience the challenge of independent study and discovery, but to also develop your report writing and oral presentation skills, which will be essential to many future careers.

Complete your studies with distinction you may want to join our active group of postgraduate students, as our Masters programme is also excellent preparation for a career in research – either in industry or within a university. And research is just one of the many challenging career paths open to our Master of Mathematics students.

Course Structure

The first two years of our Masters course run in parallel with our three-year BSc programme, with more specialised content being covered in your third and fourth years. In these final two years you will learn advanced principles through a huge range of optional subjects, as well as undertaking an independent project.

Year 1

The first year will develop your skills in calculus and other topics you may have covered at A-level, such as mechanics and probability. Modules on computation, mathematical skills, and how to present mathematical arguments will encourage you to develop ways of tackling unfamiliar problems. And modules on algebra and analysis will introduce important new concepts and ideas, which you will use in following years.

Year 2

As you progress into your second year, you will continue to learn essential algebraic principles through compulsory modules while also taking a selection of optional modules to suit your personal interests.

The optional modules on offer change each year but in previous years you could have chosen to study the theory of special relativity, take a module focusing on topology, or see how the mathematical theory you’ve already studied can be applied to meteorology.

During this year you’ll also discuss and plan where you would like to study in your third year with our overseas study coordinator.

Year 3

After developing a broad mathematical knowledge during your first two years, you will spend your third year studying at one of our university exchange partners in another country.

We have particularly strong links with institutions in North America and Australia. In recent years students have spent their year abroad in Sydney, Melbourne, Adelaide, Canberra, San Francisco, Arizona and Colorado, but other locations are also available. We will take into account your field of interest and placement preferences, and do our best to place you at the university of your choice.

Year 4

You will undertake a substantial individual project during your final year, working under the close supervision of a lecturer whose expertise matches your chosen subject. Each of our lecturers will propose project titles covering a wide range of current mathematical research, but some of our students choose to devise their own topics in conjunction with one of our lecturers.

Recent topics have ranged from “The Mobius function of Finite Groups” to “The Aerodynamics of Golf Balls” (a topic suggested by the student). In order to be assessed, you’ll submit a written report on the project, and you’ll give a short oral presentation on your findings to your lecturers and fellow Masters students.

Besides your individual project, your studies will focus on Master’s-level modules that explore topics such as lie algebra, fluid structure interaction and mathematical biology. As with years two and three, the optional modules offered in your final year usually change every year.

Teaching and Learning

You will be taught by leading mathematicians in their fields. As well as teaching, our academics are actively involved in research collaborations with colleagues throughout the world, examples from which will be used to illustrate lectures and workshops. In fact, over 87% of our mathematical sciences research outputs were judged as internationally excellent or world-leading (REF 2014), so you can be sure you’ll be learning in the most up-to-date of environments.

New material will usually be delivered through lectures, which are complemented by online notes and workshops, where you’ll focus on working through examples, either individually or in small groups, under the guidance of lecturers and mathematical teaching assistants.

In your first year you’ll have around 16 or 17 hours of timetabled classes per week, comprised of approximately eleven hours of lectures, five or six hours of workshops or computer lab classes, and one tutorial.

In tutorial groups, you’ll work with your academic advisor and the same six or seven students each week. It’s great way to get to know your fellow students and your academic advisor, who will be there to guide you throughout your degree.

Contact hours are similar in your second year, but with a greater emphasis on workshops, because the best way to truly understand complex mathematical theories is to work through examples with the guidance and support of your lecturers.

In your final year your formal contact hours will be slightly reduced as you will have become more independent, but there will be increased emphasis on using the office hours of your lecturers for individual feedback and guidance.

Individual Study

Your final year project will of course best exemplify your independent study but, to succeed at university-level mathematics, you’ll need to spend at least as much time on individual study as you spend in classes and workshops throughout your four years. Working through your lecture notes and trying the exercises set will be vital to really understanding the mathematics.

We offer a wide range of feedback to our students. Each lecturer has at least two office hours available each week, giving you the chance to discuss the material in more detail or to get face-to-face feedback on exercises you’ve attempted.

Prior to undertaking formal coursework (which will contribute to your module mark), you’ll submit answers to questions based on similar material for comments from the lecturer. The feedback you receive will then help with your coursework.

Assessment

We employ a variety of assessment methods; the method we use is determined by the module in question. They range from 100% coursework to 100% examination, with most Mathematics modules combining 80% examination and 20% coursework.

The coursework component will be made up of problems set from an example sheet, which will be handed in, marked and returned, together with the solutions. For some modules there are also programming assignments and/or class tests.

Study abroad or Placement Year

Integral to this degree programme, you’ll spend your third year studying Mathematics abroad, usually at a university in Australia or North America.

For further details, visit our Study Abroad section of our website.

After the course

Study with us and you’ll graduate with a deep understanding of mathematics – and with great career prospects. And the experience of previous students suggests that completing a substantial dissertation project is viewed very positively by potential employers.

You could choose to enter one of the professions traditionally associated with mathematics, such as accountancy, banking and finance, statistics and data analysis, and secondary or higher education. Or you could follow other graduates into roles in which logical thought and problem solving are important. These include information technology, engineering, logistics and distribution, central or local government, as well as other business areas. Many of our graduates also choose to continue their studies by going on to a higher degree.

Career destinations

Example of careers that you could enter include:

  • Secondary school teacher
  • Researcher
  • Mathematical modeller in industry
  • Accountant
  • Data Scientist
  • Actuary

Course related costs

You are eligible for reduced fees during the year abroad. Further details are available on our Tuition Fee website. 

There will be extra costs related to items such as your travel and accommodation during your year abroad, which will vary depending on location.

Please see Additional Course Fees for details of other course-related costs.

Course Modules 2020/1

Students must study the following modules for 120 credits:

Name Code Credits

ALGEBRA 1

Algebra plays a key role in pure mathematics and its applications. We will provide you with a thorough introduction and develop this theory from first principles. In the first semester, we consider linear algebra and in the second semester, we move on to group theory. In the first semester, we develop the theory of matrices, mainly (though not exclusively) over the real numbers. The material covers matrix operations, linear equations, determinants, eigenvalues and eigenvectors, diagonalization and geometric aspects. We conclude with the definition of abstract vector spaces. At the heart of group theory in Semester 2 is the study of symmetry and the axiomatic development of the theory. The basic concepts are subgroups, Lagrange's theorem, factor groups, group actions and the Isomorphism Theorem.

MTHA4006Y

20

CALCULUS AND MULTIVARIABLE CALCULUS

In this module you will study: (a) Complex numbers. (b) Vectors. (c) Differentiation; power series. (d) Integration: applications, curve sketching, area, arc-length. (e) First and second-order, constant-coefficient ordinary differential equations. Reduction of order. Numerical solutions using MAPLE. Partial derivatives, chain rule. (f) Line integrals. Multiple integrals, including change of coordinates by Jacobians. Green's Theorem in the plane.

MTHA4008Y

30

COMPUTATION AND MODELLING

Computation and modelling are essential skills for the modern mathematician. While many applied problems are amenable to analytic methods, many require some numerical computation to complete the solution. The synthesis of these two approaches can provide deep insight into highly complex mathematical ideas. This module will introduce you to the art of mathematical modelling, and train you in the computer programming skills needed to perform numerical computations. A particular focus is classical mechanics, which describes the motion of solid bodies. Central to this is Newton's second law of motion, which states that a mass will accelerate at a rate proportional to the force imposed upon it. This leads to an ordinary differential equation to be solved for the velocity and position of the mass. In the simplest cases the solution can be constructed using analytical methods, but in more complex situations, for example motion under resistance, numerical methods may be required. Iterative methods for solving nonlinear algebraic equations are fundamental and will also be studied. Further examples drawn from pure mathematics and statistics demonstrate the power of modern computational techniques.

MTHA4007Y

20

MATHEMATICAL SKILLS

The unit provides you with a thorough introduction to some systems of numbers commonly found in Mathematics: natural numbers, integers, rational numbers, modular arithmetic. It also introduces you to common set theoretic notation and terminology and a precise language in which to talk about functions. There is emphasis on precise definitions of concepts and careful proofs of results. Styles of mathematical proofs you will discuss include: proof by induction, direct proofs, proof by contradiction, contrapositive statements, equivalent statements and the role of examples and counterexamples. In addition, this unit will also provide you with an introduction to producing mathematical documents using Latex, and an introduction to solving mathematical problems computationally using both Symbolic Algebra packages and Excel.

MTHA4001A

20

PROBABILITY

Probability is the study of the chance of events occurring. It has important applications to understand the likelihood of multiple events happening together and therefore to rational decision-making. This module will give you an introduction to the modern theory of probability developed from the seminal works of the Russian mathematician A.N. Kolmogorov in 1930s. Kolmogorov's axiomatic theory describes the outcomes (events) of a random experiment as mathematical sets. Using set theory language you will be introduced to the concept of random variables, and consider different examples of discrete random variables (like binomial, geometric and Poisson random variables) and continuous random variables (like the normal random variable). In the last part of the module you will explore two applications of probability: reliability theory and Markov chains. Aside of the standard lectures and workshop sessions, there will be two computer-lab sessions of (2 hours each) where you will apply probability theory to specific everyday life case studies. The only pre-requisites for this module are a basic knowledge of set theory and of calculus that you would have acquired during the Autumn semester. If you have done probability or statistic at A-level you will rediscover its contents now taught using a proper and more elegant mathematical formalism.

MTHA4001B

10

REAL ANALYSIS

We will explore the mathematical notion of a limit and see the precise definition of the limit of a sequence of real numbers and learn how to prove that a sequence converges to a limit. After studying limits of infinite sequences, we move on to series, which capture the notion of an infinite sum. We then learn about limits of functions and continuity. Finally, we will learn precise definitions of differentiation and integration and see the Fundamental Theorem of Calculus.

MTHA4003Y

20

Students must study the following modules for 80 credits:

Name Code Credits

ALGEBRA II

The module offers an introduction to vector space theory in the first semester followed by ring theory in the second semester. For vector spaces you will learn about subspaces, basis and dimension, linear maps, rank-nullity theorem, change of basis and the characteristic polynomial. This is followed by an introduction to rings using integers as a model. We develop the theory with many examples related to familiar concepts such as substitution and factorisation. Important examples of commutative rings include fields, domains, polynomial rings and their quotients.

MTHA5008Y

20

COMPLEX ANALYSIS

This is a course in analysis. It is an introduction to the classical theory of the complex plain

MTHA5006Y

20

DIFFERENTIAL EQUATIONS AND APPLIED METHODS

(a) Ordinary Differential Equations: solution by reduction of order; variation of parameters for inhomogeneous problems; series solution and the method of Frobenius. Legendre's and Bessel's equations: Legendre polynomials, Bessel functions and their recurrence relations; Fourier series; Partial differential equations (PDEs): heat equation, wave equation, Laplace's equation; solution by separation of variables. (b) Method of characteristics for hyperbolic equations; the characteristic equations; Fourier transform and its use in solving linear PDEs; (c) Dynamical Systems: equilibrium points and their stability; the phase plane; theory and applications.

MTHA5004Y

20

INVISCID FLUID FLOW

This module introduces some of the fundamental physical concepts and mathematical theory needed to analyse the motion of a fluid, with the focus predominantly on inviscid, incompressible motions. You will examine methods for visualising flow fields, including the use of particle paths and streamlines. You will study the dynamical theory of fluid flow taking Newton's laws of motion as its point of departure, and the fundamental set of equations comprising conservation of mass and Euler's equations will be discussed. The reduction to Laplace's equation for irrotational flow will be demonstrated, and Bernoulli's equation is derived as a first integral of the equation of motion. Having established the basic theory, the way is set for a broader discussion of flow dynamics including everyday practical examples. Vector calculus will cover divergence, gradient, curl of vector field, the Laplacian, scalar potential and path-independence of line integral, surface integrals, divergence theorem and Stokes' theorem. Computational fluid dynamics will also be studied.

MTHA5007Y

20

Students will select 20 - 40 credits from the following modules:

Name Code Credits

COMBINATORICS AND FURTHER LINEAR ALGEBRA

Combinatorics is one of the most applicable and accessible part of mathematics, yet it is also full of challenging problems. We shall cover many basic combinatorial concepts including counting arguments (enumerative combinatorics) and Ramsey theory. Linear Algebra underpins much of modern mathematics and is the key to many applications. We will introduce bilinear forms and symmetric operators on vector spaces leading to the diagonalization of linear maps and the spectral theorem. This theorem is key to many applications in statistics and physics. Other topics covered will include polynomials of linear maps, the Cayley-Hamilton theorem and the Jordan normal form of a matrix.

MTHF5031Y

20

MATHEMATICAL MODELLING

Mathematical modelling is concerned with how to convert real problems, such as those arising in industry or other sciences, into mathematical equations, and then solving them and using the results to better understand, or make predictions about, the original problem. This topic will look at techniques of mathematical modelling, examining how mathematics can be applied to a variety of real problems and give insight in various areas. The topics will include approximation and non-dimensionalising, and discussion of how a mathematical model is created. We will then apply this theory to a variety of models such as traffic flow as well as examples of problems arising in industry. We will consider population modelling, chaos, and aerodynamics.

MTHF5032Y

20

MATHEMATICAL STATISTICS

This module introduces the essential concepts of mathematical statistics deriving the necessary distribution theory as required. In consequence in addition to ideas of sampling and central limit theorem, it will cover estimation methods and hypothesis-testing.

CMP-5034A

20

Students will select 0 - 20 credits from the following modules:

Name Code Credits

Applied Statistics

This module considers both the theory and practice of statistical modelling of time series. Students will be expected to analyse real data using R.

CMP-5042B

10

EDUCATIONAL PSYCHOLOGY

This module will provide you with an introduction to key areas of psychology with a focus on learning and teaching in education. By the end of the module you should be able to: - Discuss the role of perception, attention and memory in learning; - Compare and contrast key theories related to learning, intelligence, language, thinking and reasoning; - Critically reflect on key theories related to learning, intelligence, language, thinking and reasoning in the practical context; - Discuss the influence of key intrapersonal, interpersonal and situational factors on pupils learning and engagement in educational settings.

EDUB5012A

20

ELECTROMAGNETISM, OPTICS, RELATIVITY AND QUANTUM MECHANICS

This module gives an introduction to important topics in physics, with particular, but not exclusive, relevance to chemical and molecular physics. Areas covered include optics, electrostatics and magnetism and special relativity. The module may be taken by any science students who wish to study physics beyond A Level.

PHY-4001Y

20

GEOPHYSICS AND ASTROPHYSICS

In this module, you will learn about the methods used to model the physics of the Earth and Universe. You will explore the energy, mechanics, and physical processes underpinning Earth's systems. This includes the study of its formation, subsequent evolution and current state through the understanding of its structure and behaviour - from our planet's interior to the dynamic surface and into the atmosphere. In the second part of this module, you will study aspects of astrophysics including the history of astrophysics, radiation, matter, gravitation, astrophysical measurements, spectroscopy, stars and some aspects of cosmology. You will learn to predict differences between idealised physics and real life situations. You will also improve your skills in problem solving, written communication, information retrieval, poster design, information technology, numeracy and calculations, time management and organisation.

PHY-4003A

20

INTRODUCTION TO FINANCIAL AND MANAGEMENT ACCOUNTING

This module provides a foundation in the theory and practice of accounting and an introduction to the role, context and language of financial reporting and management accounting. The module assumes no previous study of accounting. It is be taken to provide a foundation to underpin subsequent specialist studies in accounting.

NBS-4108B

20

INTRODUCTORY MACROECONOMICS

The aim of this module is to introduce students to the economic way of reasoning, and to apply these to a variety of real world macroeconomic issues. Students will begin their journey by learning how to measure macroeconomic aggregates, such as GDP, GDP growth, unemployment and inflation. The module will establish the foundations to conduct rigorous Macroeconomics analysis, as students will learn how to identify and characterise equilibrium on the goods market and on the money market. The module will also introduce students to policy-making, exploring and evaluating features and applications of fiscal and monetary policy. Students will grow an appreciation of the methods of economic analysis, such as mathematical modelling, diagrammatic representation, and narrative. The discussion of theoretical frameworks will be enriched by real world applications, and it will be supported by an interactive teaching approach.

ECO-4006Y

20

LINEAR REGRESSION USING R

This is a module designed to give you the opportunity to apply linear regression techniques using R. While no advanced knowledge of probability and statistics is required, we expect you to have some background in probability and statistics before taking this module. The aim is to provide an introduction to R and then provide the specifics in linear regression.

CMP-5043B

10

PROGRAMMING FOR NON-SPECIALISTS

The purpose of this module is to give you a solid grounding in the essential features of programming. The module is designed to meet the needs of the student who has not previously studied programming.

CMP-5020B

20

Students must study the following modules for 120 credits:

Name Code Credits

YEAR ABROAD

A year studying abroad.

MTHX6014Y

120

Students must study the following modules for credits:

Name Code Credits

Students will select 40 credits from the following modules:

Students wishing to complete a Statistics Project on CMP-7017Y can do so on MTHA7029Y

Name Code Credits

MATHEMATICS DISSERTATION

You will complete a fourth year dissertation on a mathematical topic that is a compulsory part of some Master of Mathematics degrees.

MTHA7029Y

40

Students will select 80 credits from the following modules:

Name Code Credits

DIFFERENTIAL GEOMETRY WITH ADVANCED TOPICS

This module will give an introduction to ideas of differential geometry. Key examples will be curves and surfaces embedded in 3-dimensional Euclidean space. We will start with curves and will study the curvature and torsion, building up to the fundamental theorem of curve theory. From here we move on to tangent spaces and the first and second fundamental forms, Gaussian curvature, and further topics, including the advanced topics for 4th year students.

MTHE7030A

20

DYNAMICAL OCEANOGRAPHY WITH ADVANCED TOPICS

The ocean is an important component of the Earth's climate system. This module covers mathematically modelling of the large-scale ocean circulation and oceanic wave motion. This module builds upon the techniques in fluid dynamics and differential equations that you developed in previous years of study. It then uses these techniques to explain some interesting phenomena in the ocean that are relevant to the real world. We begin by examining the effects of rotation on fluid flows. This naturally leads to the important concept of geostrophy, which enables ocean currents to be inferred from measurements of the sea surface height or from vertical profiles of seawater density. Geostrophy also plays a key role in the development of a model for the global scale circulation of abyssal ocean. The role of the wind in driving the ocean will be examined. This enables us to model the large-scale circulation of the ocean including the development of oceanic gyres and strong western boundary currents, such as the Gulf Stream. The module concludes by examining the role of waves, both at the sea surface and internal to the ocean. The differences between wave motion at mid-latitudes and the Equator are examined, as is the roll of the Equator as a wave-guide. The equatorial waves that you will study are intimately linked with the El Nino phenomenon that affects the climate throughout the globe. The advanced topic is a study of barotropic and baroclinic instability.

MTHE7007B

20

FINANCIAL MATHEMATICS WITH ADVANCED TOPICS

The Mathematical Modelling of Finance is a relatively new area of application of mathematics yet it is expanding rapidly and has great importance for world financial markets. The module is concerned with the valuation of financial instruments known as derivatives. Introduction to options, futures and the no-arbitrage principle. Mathematical models for various types of options are discussed. We consider also Brownian motion, stochastic processes, stochastic calculus and Ito's lemma. The Black-Scholes partial differential equation is derived and its connection with diffusion brought out. It is applied and solved in various circumstances. Further advanced topics may include American options or stochastic interest rate models.

MTHE7026B

20

GROUPS AND ALGEBRA WITH ADVANCED TOPICS

This module is about further topics in algebra. It builds on the knowledge obtained on groups, rings and vector spaces in the first two years. Groups can be studied directly, or via objects called algebras (which have the structures of both rings and vector spaces). On the other hand, algebras can also be studied in their own right. Some of these concepts will be explored in this module.

MTHE7033A

20

NUMBER THEORY WITH APPLICATIONS IN CRYPTOGRAPHY

Number Theory is the study of arithmetical properties of the integers: properties of, and patterns in, prime numbers, integer solutions of equations with integer coefficients, etc. Gauss called Number Theory "the queen of mathematics" and, following on from work of Fermat and Euler, is responsible for the emergence of Number Theory as a central subject in modern mathematics. Since then, Number Theory has developed in many directions, including Algebraic, Analytic and Probabilistic Number Theory, Diophantine Geometry and has found surprising applications in modern life (notably in Cryptography). In this module, building on first year material on prime factorization and basic congruences, and second year material on groups, rings and fields, you will study various aspects of Number Theory, including certain diophantine equations, polynomial congruences and the famous theorem of Quadratic Reciprocity. The Advanced Topics will be on applications of Number Theory in Cryptography.

MTHE7035B

20

PARTIAL DIFFERENTIAL EQUATIONS WITH ADVANCED TOPICS

Partial Differential Equations (PDEs) are ubiquitous in applied mathematics. They arise in many models of physical systems where there is coupling between the variation in space and time, or more than one spatial dimension. Examples include fluid flows, electromagnetism, population dynamics, and the spread of infectious diseases. It is therefore important to understand the theory of PDEs, as well as different analytic and numerical methods for solving them. This module will provide you with an understanding of the different types of PDE, including linear, non-linear, elliptic, parabolic and hyperbolic; and how these features affect the required boundary conditions and solution techniques. We will study different methods of analytical solution (such as greens functions, boundary-integral methods, similarity solutions, and characteristics); as well as appropriate numerical methods (with topics such as implicit versus explicit schemes, convergence and stability). Examples and applications will be taken from a variety of fields.

MTHE7034A

20

QUANTUM MECHANICS WITH QUANTUM FLUIDS

This module covers the laws of physics described by quantum mechanics that govern the behaviour of microscopic particles. The module will focus on non-relativitic quantum mechanics that is described by the Schrodinger equation. Time-dependent and time-independent solutions will be presented in different contexts including an application to the hydrogen atom. Approximation schemes will also be discussed, with particular emphasis on variational principles, WKB approximation. Extensions of this content to describe quantum fluids such as ultra-cold Bose gases and superfluids in terms of the Gross-Pitaevskii equation will also be presented.

MTHE7032A

20

SET THEORY WITH ADVANCED TOPICS

Zermelo-Fraenkel set theory. The Axiom of Choice and equivalents. Cardinality, countability, and uncountability. Trees, Combinatorial set theory. Advanced topic: Constructibility.

MTHE7003B

20

WAVES WITH ADVANCED TOPICS

You will gain an introduction to the theory of waves. You will study aspects of linear and nonlinear waves using analytical techniques, and Hyperbolic Waves and Water Waves will also be covered. It requires some knowledge of hydrodynamics and multi-variable calculus. The module is suitable for those with an interest in Applied Mathematics.

MTHE7031B

20

Disclaimer

Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. In some cases optional modules can have limited places available and so you may be asked to make additional module choices in the event you do not gain a place on your first choice. Where this is the case, the University will endeavour to inform students.

Further Reading

  • Ask a Student

    This is your chance to ask UEA's students about UEA, university life, Norwich and anything else you would like an answer to.

    Read it Ask a Student
  • Maths Taster Day

    Join our Maths Taster day, and discover where a Maths A Level can take you at University.

    Read it Maths Taster Day
  • UEA Award

    Develop your skills, build a strong CV and focus your extra-curricular activities while studying with our employer-valued UEA award.

    Read it UEA Award

Entry Requirements

  • A Level AAB including an A in Mathematics or ABB including an A in Mathematics and a B in Further Mathematics. Science A-Levels must include a pass in the practical element.
  • International Baccalaureate 33 points including Higher Level 6 in Mathematics.
  • Scottish Highers AAAAA alongside Scottish Advanced Highers Mathematics at grade B.
  • Scottish Advanced Highers BBC including a B in Mathematics.
  • Irish Leaving Certificate 4 subjects at H2, 2 subjects at H3 including H2 in Mathematics.
  • Access Course Pass Access to HE Diploma with Distinction in 36 credits at Level 3 and Merit in 9 credits at Level 3, including 12 credits in Mathematics at Distinction. Please note that an interview will be required.
  • BTEC DDD in relevant subject alongside grade A in A-Level Mathematics. Excludes BTEC Public Services, BTEC Uniformed Services and BTEC Business Administration
  • European Baccalaureate 80% overall including 85% in Mathematics.

Entry Requirement

General Studies and Critical Thinking are not accepted. 

If you do not meet the academic requirements for direct entry, you may be interested in one of our Foundation Year programmes:

Mathematics with a Foundation Year

Students for whom English is a Foreign language

Applications from students whose first language is not English are welcome. We require evidence of proficiency in English (including writing, speaking, listening and reading):

  • IELTS: 6.5 overall (minimum 5.5 in all components)

We also accept a number of other English language tests. Please click here to see our full list.

INTO University of East Anglia 

If you do not yet meet the English language requirements for this course, INTO UEA offer a variety of English language programmes which are designed to help you develop the English skills necessary for successful undergraduate study:

If you do not meet the academic and or English requirements for direct entry our partner, INTO University of East Anglia offers guaranteed progression on to this undergraduate degree upon successful completion of a preparation programme. Depending on your interests, and your qualifications you can take a variety of routes to this degree:

Interviews

Most applicants will not be called for an interview and a decision will be made via UCAS Track. However, for some applicants an interview will be requested. Where an interview is required the Admissions Service will contact you directly to arrange a time.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year.  We believe that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry on your UCAS application.

Intakes

The annual intake is in September each year.

Alternative Qualifications

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

GCSE Offer

You are required to have Mathematics and English Language at a minimum of Grade C or Grade 4 or above at GCSE.

Course Open To

UK and overseas applicants.

Fees and Funding

Undergraduate University Fees and Financial Support

Tuition Fees

Information on tuition fees can be found here:

UK students

EU Students 

Overseas Students

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds.

The University of East Anglia offers a range of Scholarships; please click the link for eligibility, details of how to apply and closing dates.

How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The application allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it is sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The Institution code for the University of East Anglia is E14.

Further Information

Please complete our Online Enquiry Form to request a prospectus and to be kept up to date with news and events at the University. 

Tel: +44 (0)1603 591515

Email: admissions@uea.ac.uk

    Next Steps

    We can’t wait to hear from you. Just pop any questions about this course into the form below and our enquiries team will answer as soon as they can.

    Admissions enquiries:
    admissions@uea.ac.uk or
    telephone +44 (0)1603 591515