BEng Engineering with a Year in Industry


Attendance
Full Time
Award
Degree of Bachelor of Engineering



UCAS Course Code
H102
A-Level typical
AAB (2017/8 entry) See All Requirements
Visit Us

Video

Engineering at UEA is built on great links with industry, exciting research and diverse teaching. We have a multidisciplinary approach to engineering research, which brings together academics from many of our highly respected Schools including Environmental Sciences, Mathematics and Biological Sciences.

Watch It

Key facts

Article

UEA’s Dr. Matthew Alexander is carrying out cutting-edge research on novel ‘nanoelectrospray’ printing technology that has an extraordinary range of potential applications.

Read It

Key facts

Designed and delivered with strong support from industry, this course will prepare you for a future career in engineering. You’ll develop varied skills for a career beyond university thanks to close partnerships with major engineering companies. We take a multidisciplinary approach to our teaching, working closely with UEA’s prestigious schools of Environmental Sciences, Computing Sciences and Mathematics, so you can learn from a range of experts. Plus, the year in industry will ensure you graduate with relevant work experience, putting you one step ahead of other graduates.

After providing the general engineering education that industry values, this course allows you to specialise in either Mechanical or Electronic and Electrical engineering. All our engineering courses have a common first year so you can get to know the subject before specialising, maintaining a mixed approach, or transferring to one of our energy courses.

Overview

Our BEng Engineering degree gives you a comprehensive understanding of the principles of engineering, with the flexibility to specialise in whatever area you choose.

All our engineering degrees have a common first year, so you can decide whether to focus on mechanical, energy or electronic/electrical once you’ve had a chance to get to know the subject. The BEng includes two distinct routes that you can follow (Mechanical or Electronic and Electrical), and you’re also able to transfer onto an Energy Engineering degree after your first year.

We design and deliver our degrees with strong support from industry, so everything you learn is preparing you for a successful future. You’ll develop a broad range of skills, from fundamental engineering know-how, to advanced mathematics, mechanics and environmental awareness.

Choose your path

We’re a multidisciplinary department, with strong connections to UEA’s prestigious School of Environmental Sciences as well as Computing Sciences (which has a particular strength in Computer Systems Engineering) and Mathematics.

That means you’ll receive teaching and support from a wide range of experts in a degree programme that gives you extraordinary choice.

Alongside our core modules, you can take options in anything from computer programming or nuclear energy, to climate change or marketing.

Course Structure

Year 1

In your first year, you’ll take on small design projects to gain a grounding in engineering mathematics and principles, supported by a broad introduction to energy from practising engineers. Current modules include: Mathematics for Engineers; Engineering Practice; Engineering Principles and Laws; Mechanics; Engineering Studies; and a number of options including business and languages.

Your first year taster course Engineering Studies allows you to study a number of more focused engineering disciplines. Introductions to civil engineering, mechanical engineering, electronic and electrical engineering, and energy engineering are delivered through fieldwork, hands-on component assembly, 3D printing, CADCAM and case studies provided by visiting industrialists.

You then have the flexibility to change your degree path based on what you’ve learnt. You can choose your path at any point up to the start of your second semester or, with appropriate module choices, you can also delay the decision until the end of second year.

Year 2

In addition to the core material that builds on your first year, you’ll be exposed to electronic and electrical engineering together with the fundamentals of mechanics, dynamics and vibration that are so important for mechanical engineers. This broad exposure is valued by employers who seek well-rounded engineers. Teaching in Engineering Principles and Design carries the thread of design through to your final year.

If you achieve 60% or above in your second year you may be eligible to transfer onto the four year MEng Engineering programme.

Year 3

Spend your third year working in a company related to your chosen discipline, before returning to complete your degree in the fourth year. A year in industry is a great way to hone your skills, gain real-world experience and make contacts.

Year 4

Your final year gives you the chance to put all you have learned into action, with an in-depth project based on your individual interests.  This could be experimental research, a practical construction, a circuit assembly, building a programmable controller or any similar project. This task is crucial in defining your pathway towards a specific career, so we encourage students to exploit their industry contacts to link their study to a real engineering problem.

Project management skills are embedded in this module together with understanding commercial risks and opportunities. Stress analysis and design are also taught alongside control systems to provide an insight into the world of mechanical engineering.

Become a great engineer

Whatever pathway you choose to study, you’ll leave UEA a highly-qualified engineer with the skills and experience to join the workforce. During your degree you’ll enjoy regular site visits to our partners in the region, receive guest lectures from professional engineers and get the chance to attain placements and funding from major companies.

We offer students the chance to take a 10-week placement in the summer of your second year in place of an optional module, while our SELECT sponsorship scheme is a great way for first year students to find a summer placement and secure funding (read more about SELECT).

Our links with the New Anglia Advanced Manufacturing & Engineering Network (NAAME), Hethel Innovation and many of the 400 member organisations of the East of England Energy Group (EEEGR) ensure students are spoilt for choice when applying for work placements. The links that our students make are long-lasting, with some graduates going on to work for international companies based in the region – 100% of our MSc graduates have found employment or further study within six of months of graduating.

Learn to design, programme, build and test

Due to the range of options built into the degree, you can study many different aspects of engineering. Some major themes you’ll be introduced to are:

  • Design is what distinguishes engineers from scientists. It’s what allows engineers to be creative and innovative every day. We embed the theme of design through all stages of your degree, from concept to construction, incorporating Computer Aided Design (CAD), detailed drawings, stress calculations and testing.
  • Project management is a crucial aspect of commercial engineering, but it’s notoriously hard to teach independently of experience. We incorporate the teaching of management skills into technical engineering subjects so you’ll have the chance to develop on-the-job expertise.
  • Considerations of environment and ethics are engineering fundamentals in today’s world. UEA is one of a growing number of institutions to teach professional responsibility during your degree so that you graduate with an awareness of your need to minimise risk and reduce your impact on the environment and learn from past engineering mistakes at an ethical and technical level.
  • Mathematics forms the basis of much engineering practice, from problem solving to model construction. We teach an effective mix of formal and applied maths to get the best out of our students and develop crucial skills in logic that transfer into many subjects.
  • Communication is key to a successful engineering career.  Developing innovative design solutions is important but you also have to be able to explain your ideas to potential clients to win work. From the start of your degree you will have opportunities to develop this ability through a mix of oral presentations and technical writing, both individually and in teams, which are designed to boost your confidence and help you to identify your strengths.  

See the Why Choose Us Tab and explore the Engineering School pages for more about our links with industry, our graduates’ experience, teaching methods and facilities.

Course Modules 2017/8

Students must study the following modules for 100 credits:

Name Code Credits

ENGINEERING MATHEMATICS AND MECHANICS

RESERVED FOR ENGINEERING STUDENTS. This module utilises the mathematical concepts from the Mathematics for Scientists module in an engineering context, before complementing the material with practical mechanics to solve real-world problems. Over the first semester students are introduced to the vocational necessity of estimation in the absence of accurate data through a team-based competition, as well as the practical geometry and numerical methods which can be used when analytical techniques fail. This is supplemented by practical exercises in graphical presentation and data analysis which will contribute to the coursework element of the module. Teaching then concentrates on mechanics in the second semester, encompassing Newton's laws of motion, particle dynamics and conservation laws before a final exam.

ENG-4004Y

20

ENGINEERING PRACTICE

Engineering Practice prepares students for the financial and ethical considerations of working in the engineering industry as well as starting the creative design theme of the course. Semester 1 begins with a team-based induction activity. The group then studies the historical developments which govern modern design principles, including sustainability. Students produce professional technical drawings and sketches alongside 3D models using CAD software. Learning is supplemented by industrial site visits in both semesters. Semester 2 provides opportunities for students to apply the skills they have learned to a real conceptual design and culminates in an introduction to economics with applications. This module includes important introductions to design, technical report-writing, oral presentations and team-working. Professional ethical principles are introduced using classic design failures as examples. The skills learning autumn term are then brought to bear on a significant conceptual design challenge such as the EWB Engineering for People Design Challenge. The basics of economics round-of the year with the final team-based activity. Scattered throughout are support sessions run by the Careers Service and Librarians.

ENG-4003Y

20

ENGINEERING PRINCIPLES AND LAWS

To successfully complete this module you will normally need the equivalent of Maths A level grade B. This module introduces three distinct topics which will be developed during the later stages of the course. During the first semester, students investigate how to harness the properties of modern materials within an engineering context, followed by fluid flow and hyrdaulics both assessed by formative course tests. Fluids continues in Semester 2 followed by the study of thermodynamics and heat transfer. Students complete a number of laboratory exercises which are assessed by two formal summative reports

ENG-4002Y

20

ENGINEERING STUDIES

This module provides an introduction to a variety of engineering disciplines. It provides a hands-on introduction to electronic-electrical engineering, exposes students to a range of energy industry specialists and encourages students to develop their understanding of the UK and global energy mix. In addition to a brief overview of civil engineeringit introduces the basics of structural engineering and fundamental principles that civil and mechanical engineers use (structural frames, bridges, foundations, stresses, mechanisms) putting some of these in context.Permeating the delivery of the above topics isthe development of programming, simulation and practical skills using e.g. Matlab, Simulink, Arduino. # The energy sector calls on engineers from a variety of disciplines when developing new sources of power. This module exposes students to a range of energy industry specialists and encourages students to develop their understanding of the UK and global energy mix, its challenges and future. # Most engineering equipment requires electrical power for its use and in many cases electronic control systems for its operation. This module provides a hands-on introduction to both aspects in preparation for the electronic-electrical theme that continues in second year for all students. # Civil engineers are always required for the construction of engineering facilities, whether it is to house them, to provide load carrying supports or to establish the ground conditions necessary for safe foundations. In addition to a brief overview of civil engineering this module introduces the basics of structural engineering. The way that solid and lattice structures are used to transfer loads is explored and the important topic of engineers' bending theory builds on consideration of actions such as compression, tension, torsion and shear. # Of all the disciplines of engineering mechanical engineeringappearsto be the most versatile. The bulk of the first and second year include fundamental principles that both civil and mechanical engineers use (fluids, structures, thermodynamics, mathematics, dynamics etc.) and this module puts some of these in context. # Permeating the delivery of the above topics is the development of programming and simulation skills using e.g. Matlab, Simulink, and practical skills using breadboard and Arduino.

ENG-4005Y

20

MATHEMATICS FOR SCIENTISTS A

This module covers differentiation, integration, vectors, partial differentiation, ordinary differential equations, further integrals, power series expansions, complex numbers and statistical methods. In addition to the theoretical background there is an emphasis on applied examples. Previous knowledge of calculus is assumed. This module is the first in a series of three maths modules for students across the Faculty of Science that provide a solid undergraduate mathematical training. The follow-on modules are Mathematics for Scientists B and C.

ENV-4015Y

20

Students will select 20 credits from the following modules:

Name Code Credits

INTRODUCTION TO BUSINESS (2)

Introduction to Business is organised in thematic units across semesters 1 and 2, aiming to provide a platform for understanding the world of management and the managerial role. The module explores the business environment, key environmental drivers and functions of organisations, providing an up-to-date view of current issues faced from every contemporary enterprise such as business sustainability, corporate responsibility and internationalisation. There is consideration of how organisations are managed in response to environmental drivers. To address this aspect, this module introduces key theoretical principles in lectures and seminars are designed to facilitate fundamental study skills development, teamwork and practical application of theory. By the end of this module, students will be able to understand and apply key concepts and analytical tools in exploring the business environment and industry structure respectively. This module is for NON-NBS students only.

NBS-4008Y

20

PHYSICAL AND CHEMICAL PROCESSES IN THE EARTH'S SYSTEM I

The habitability of planet Earth depends on the physical and chemical systems on the planet which control everything from the weather and clim ate to the growth of all living organisms. This module aims to introduce you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret these systems. The module will lead many of you on to second and third year courses (and beyond) studying these systems in more detail, but even for those of you who choose to study other aspects of environmental sciences a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The course has two distinct components, one on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) and one on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). During the course of the module the teachers will also emphasise the inter-relationships between these two sections This course is taught in two variants: this module provides a Basic Chemistry introduction for those students who have little or no background in chemistry before coming to UEA (see pre-requisites). This course will run throughout semester 2 involving a mixture of lectures, laboratory practical classes, workshops and a half day field trip.

ENV-4007B

20

PHYSICAL AND CHEMICAL PROCESSES IN THE EARTH'S SYSTEM II

The habitability of planet Earth depends on the physical and chemical systems on the planet which control everything from the weather and climate to the growth of all living organisms. This module aims to introduce you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret these systems. The module will lead many of you on to second and third year courses (and beyond) studying these systems in more detail, but even for those of you who choose to study other aspects of environmental sciences a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The course has two distinct components, one on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) and one on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). During the course of the module the teachers will also emphasise the inter-relationships between these two sections This module is for students with previous experience of chemistry. This course will run throughout semester 2 involving a mixture of lectures, laboratory practical classes, workshops and a half day field trip.

ENV-4008B

20

PROGRAMMING FOR APPLICATIONS

The purpose of this module is to give the student a solid grounding in the essential features of programming using Java programming language. The module is designed to meet the needs of the student who has not previously studied programming.

CMP-4009B

20

Students must study the following modules for 100 credits:

Name Code Credits

ANALOGUE AND DIGITAL ELECTRONICS

This module provides a practical introduction to electronics. Topics include a review of basic components and fundamental laws; introduction to semiconductors; operational amplifiers; combinational logic; sequential logic; and state machines. Much of the time is spent on practical work. Students learn how to build prototypes, make measurements and produce PCBs.

CMP-5027A

20

DYNAMICS AND VIBRATION

ENG-5004B

20

ENGINEERING PRINCIPLES AND DESIGN

This module purposely fuses the boundaries conventionally constraining engineering designers, to enable you to fully explore the breadth of design principles and processes presented within a contemporary design challenge. Supported by a framework of integrated learning, you will continue to develop your ability to straddle the boundaries of creative design practice in the determination of holistic design solutions. Societal design challenges will add real-world context to problems posed as you explore the issues facilitating the realisation of revolutionary ideas for example Despomier's vertical farms.

ENG-5003Y

20

MATHEMATICS FOR SCIENTISTS B

This module is the second in a series of three mathematical modules for students across the Faculty of Science. It covers vector calculus (used in the study of vector fields in subjects such as fluid dynamics and electromagnetism), time series and spectral analysis (a highly adaptable and useful mathematical technique in many science fields, including data analysis), and fluid dynamics (which has applications to the circulation of the atmosphere, ocean, interior of the Earth, chemical engineering, and biology). There is a continuing emphasis on applied examples.

MTHB5006A

20

MATHEMATICS FOR SCIENTISTS C

MTHB5007B

20

Students will select 20 credits from the following modules:

Name Code Credits

ARCHITECTURES AND OPERATING SYSTEMS

This module studies the organization of both the system software and the underlying hardware architecture in modern computer systems. The role of concurrent operation of both hardware and software components is emphasized throughout, and the central concepts of the module are reinforced by practical work in the laboratory.

CMP-5013A

20

CLIMATE CHANGE: SCIENCE AND POLICY

This module develops skills and understanding in the integrated analysis of global climate change, using perspectives from both the natural sciences and the social sciences. The course gives grounding in the basics of climate change science, impacts, adaptation, mitigation and their influence on and by policy decisions. It also offers a historical perspective on how climate policy has developed, culminating in the December 2015 Paris Agreement. Finally, it considers what will be required to meet the goal of the Paris Agreement to limit global warming to well below 2 #C above pre-industrial levels.

ENV-5003A

20

INTRODUCTION TO FINANCIAL AND MANAGEMENT ACCOUNTING (2)

This module provides a foundation in the theory and practice of accounting and an introduction to the role, context and language of financial reporting and management accounting. The module assumes no previous study of accounting. It may be taken as a standalone course for those students following a more general management pathway or to provide a foundation to underpin subsequent specialist studies in accounting. This module is for NON-NBS students only.

NBS-4010Y

20

INTRODUCTION TO ORGANISATIONAL BEHAVIOUR (2)

The overall aim of this module is for students to develop an understanding of the structure, functioning, and performance of organisations with particular reference to the behaviour of the individuals and groups who work within them. Specifically, the module aims are to: # Develop an appreciation of the nature and historical development of organisational behaviour (OB). # Introduce key concepts and theories in organisational behaviour. # Develop an understanding of the linkages between OB research, theory, and practice. # Develop analytical and academic writing skills. This module is for NON-NBS students only.

NBS-4011Y

20

METEOROLOGY I

This module is designed to give a general introduction to meteorology, concentrating on the physical processes in the atmosphere and how these influence our weather. The module contains both descriptive and mathematical treatments of radiation balance, fundamental thermodynamics, dynamics, boundary layers, weather systems and meteorological hazards. The assessment is designed to allow those with either mathematical or descriptive abilities to do well; however a reasonable mathematical competence is essential, including a basic understanding of differentiation and integration.

ENV-5008A

20

PROGRAMMING FOR NON-SPECIALISTS

The purpose of this module is to give the student a solid grounding in the essential features programming using the Java programming language. The module is designed to meet the needs of the student who has not previously studied programming.

CMP-5020B

20

RENEWABLE ENERGY

This module builds on understanding in wind, tidal and hydroelectric power and introduces theories and principles relating to a variety of renewable energy technologies including solar energy, heat pumps and geothermal sources, fuel cells and the hydrogen ecomony, biomass energy and anaerobic digestion. Students will consider how these various technologies can realistically contribute to the energy mix. Students will study the various targets and legislative instruments that are used to control and encourage developments. Another key aspect of the module is the study and application of project management and financial project appraisal techniques in a renewable energy context.

ENG-5002B

20

Students must study the following modules for 120 credits:

Name Code Credits

YEAR IN INDUSTRY

The work placement will take place in year 3 of the programme and is worth 120 credits, it is assessed on a pass/fail basis which is normally a technical report marked by your mentor and a presentation delivered to UEA teaching staff. A series of formative stage submissions are also included for feedback on progress. The mark from the work placement module does not count towards the classification of your degree; however, if you fail your placement assessment, you will have the option to apply to transfer to the equivalent year 3 degree programme without a year in Industry.

ENG-6005Y

120

Students must study the following modules for 80 credits:

Name Code Credits

CONTROL SYSTEMS

MODULE NOT AVAILABLE UNTIL 2018/19. Control systems are everywhere; automatic control of wind turbines, building management controls. Aerospace controls. Understanding control systems is important for engineers. The module begins with a review of the underlying theory of control utilising Laplace transforms and other techniques. Open and closed loop systems, feedback and stability will be considered. Software tools will be used. Industrial applications will be introduced using case studies.

ENG-6007A

20

ELECTRICITY GENERATION AND DISTRIBUTION

This module studies how electricity is generated and how it is distributed to users. The first part studies DC and AC electricity and looks at how RLC circuits behave through complex phasor analysis. The second part moves on to electricity generators, beginning with magnetism and Faraday's Law. Synchronous and asynchronous generators are studied along with application to conventional power stations and to renewable generation (e.g. wind). Transformers and transmission lines are studied with a view to distrubution of electricity. Voltage conversion methods such as the rectifier, buck and boost converters are examined and finally electricity generation through solar is covered.

ENG-6001B

20

INDIVIDUAL ENGINEERING PROJECT

MODULE NOT AVAILABLE UNTIL 2018/19. Students will choose from a published list a study of a topic related to their chosen engineering discipline pathway and complete an in-depth individual project. Projects may be research-based, experimental, computational or other. Where possible projects will be linked to an industrial partner. Project management and risk assessment will be embedded in the taught elements. Students will complete an inception report, an interim report and final dissertation report defended at a viva.

ENG-6004Y

40

Students will select 40 credits from the following modules:

Name Code Credits

ARCHITECTURES AND OPERATING SYSTEMS

This module studies the organization of both the system software and the underlying hardware architecture in modern computer systems. The role of concurrent operation of both hardware and software components is emphasized throughout, and the central concepts of the module are reinforced by practical work in the laboratory.

CMP-5013A

20

BUSINESS AND COMPANY LAW

This module is highly vocational and primarily designed for students taking accounting and related degrees, who wish to satisfy the curriculum requirements of the accounting profession, as having a foundation in aspects of English business and company law. The module covers in particular detail the Law of Contract and Company Law but also a wide variety of other subject areas, including the English Legal System, Partnership and Agency Law, Law of Torts, Criminal Law, Data Protection Law and Employment Law.

NBS-5004Y

20

BUSINESS FINANCE

This module sets out the basic principles of financial management and applies them to the main decisions faced by the financial manager. For example, it explains why the firm's owners would like the manager to increase firm value and shows how managers choose between investments that may pay off at different points of time or have different degrees of risk. Moreover, it discusses how companies raise the necessary funds to pay for these investments and why they might prefer a particular source of finance. Overall, this module presents the tools of modern financial management in a consistent conceptual framework.

NBS-5008Y

20

EMBEDDED SYSTEMS

Embedded processors are at the core of a huge range of products e.g. mobile telephones, cameras, passenger cars, washing machines, DVD players, medical equipment, etc. The embedded market is currently estimated to be worth around 100x the 'desktop' market and is projected to grow exponentially over the next decade. This module builds on the material delivered in CMP-5013A to consider the design and development of real-time embedded system applications for commercial off the shelf (COTS) processors running real-time operating systems (RTOS) such as eLinux.

CMP-6024B

20

ENGINEERING INDUSTRIAL PROJECT 1

This module provides an opportunity to gain valuable credit-bearing industrial experience. It comprises a 10-week minimum placement over the summer vacation and submission of inception, interim and final reports which are presented at an assessed viva in the autumn term. This module replaces a 20-credit option module in the following academic year. . Where possible a distinct project element of the placement will be identified for which you have overall responsibility. The main objectives of the placement are to develop your understanding of real engineering industry, the importance of risk and commercial awareness, and how sustainability in modern engineering practice. The module comprises a 10-week minimum placement over the summer vacation and submission of inception, interim and final reports which are presented at an assessed viva in the autumn term. To ensure that this contributes to your degree and to provide enough time to complete the reports, this module replaces your 20-credit option module in the following academic year. A learning plan at the beginning sets clear aims and objectives which satisfy professional accreditation and are consistent with the UEA Code of Practice on work-based learning. You will maintain a log-book and complete quarterly reports, as you will when you graduate and progress to chartered status. You will have an academic and industry supervisor. Although the Inception and Interim Reports are formative it is absolutely essential that students take them seriously. A student who fails to complete a satisfactory interim report will be removed from the module before the start of the autumn term and will have to choose to replace it with an option module from either Environmental Sciences or Mathematics. If you are interested in the module it will be important to take advantage of opportunities to find a placement during the spring term before the placement.

ENG-6011A

20

FINANCIAL ACCOUNTING

This module is about the theory and practice of financial accounting and reporting. This includes an examination of current and legal professional requirements as they relate to limited liability companies in the UK. Large UK companies report using International Financial Reporting Standards and therefore international reporting issues are considered.

NBS-5002Y

20

FOSSIL FUELS

Geological, economic and political aspects of fossil fuels (oil, natural gas and coal) are introduced. These are used to discuss environmental concerns arising from the use of fossil fuels, and the potentially profound implications of future fuel scarcity on society. This module is suitable for students taking degrees in the School of Environmental Sciences. It can also be taken by students doing the Energy Engineering With Environmental Manageement course in the School of Mathematics. Some knowledge of Earth science and basic Chemistry will be expected.

ENV-6009A

20

HUMAN RESOURCE MANAGEMENT

This module builds on what students have learnt about managing people in organisational behaviour (NBS-4005Y). It introduces the topic of HRM and raises awareness of how the HR function can contribute to the business in providing competitive advantage. It will cover the knowledge, understanding and skills needed to be an effective people manager but will also help prepare students for a career in HR. The module provides a good grounding in the key areas of managing human resources including employee resourcing; managing the employment relationship and managing employee performance.

NBS-5011Y

20

MODELLING ENVIRONMENTAL PROCESSES

The aim of the module is to show how environmental problems may be solved from the initial problem, to mathematical formulation and numerical solution. Problems will be described conceptually, then defined mathematically, then solved numerically via computer programming. The module consists of lectures on numerical methods and computing practicals (using Matlab); the practicals being designed to illustrate the solution of problems using the methods covered in lectures. The module will guide students through the solution of a model of an environmental process of their own choosing. The skills developed in this module are highly valued by prospective employers.

ENV-6004A

20

NUCLEAR AND SOLAR ENERGY

ENG-6002Y

20

OPERATIONS STRATEGY AND MANAGEMENT

This module is about operations management, which is a functional field of management encompassing the design and improvement of the processes and systems employed in the creation and delivery of an organisation's products and services. Essentially, operations management is concerned with explaining how manufacturing and service organizations work. Managing operations well requires both strategic and tactical skills and is critical to every type of organisation, for it is only through effective and efficient utilization of resources that an organization can be successful in the long run.

NBS-5010Y

20

STRESS ANALYSIS AND DESIGN

MODULE NOT AVAILABLE UNTIL 2018/19. Beginning with a revision of first and second year concepts of elasticity this module will consolidate an understanding of torsion, shear and bending in open and closed sections with applications in aerospace, wind engineering, bridge design and others. Analytical techniques such as Mohr's circle will be covered. Students will be exposed to stress analysis design codes. Connections such as bolted and welded will be analysed.

ENG-6006Y

20

THE CARBON CYCLE AND CLIMATE CHANGE

What do you know about the drivers of climate change? Carbon dioxide (CO2) is the greenhouse gas that has, by far, the greatest impact on climate change, but how carbon cycles through the Earth is complex and not fully understood. Predicting future climate or defining 'dangerous' climate change is therefore challenging. In this module you will learn about the atmosphere, ocean and land components of the carbon cycle. We cover urgent global issues such as ocean acidification and how to get off our fossil fuel 'addiction', as well as how to deal with climate denialists.

ENV-6008A

20

Disclaimer

Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. Where this is the case, the University will endeavour to inform students.

Entry Requirements

  • A Level AAB (ABBB) including Mathematics plus one science from preferred list
  • International Baccalaureate 33 points including HL Mathematics at 6 and one HL science subject from preferred list at 6
  • Scottish Advanced Highers AAB including Mathematics plus one science from preferred list
  • Irish Leaving Certificate AAAABB including Mathematics plus one science from preferred list
  • Access Course Pass Access to HE Diploma with Distinction in 36 credits at Level 3 and Merit in 9 credits at Level 3 including 12 Level 3 credits in Mathematics and 12 Level 3 credits in one other science subject
  • BTEC DDD in a relevant subject
  • European Baccalaureate 80% including 85% and 75% in Mathematics plus one science from preferred list

Entry Requirement

You are required to have English Language at a minimum of Grade C or Grade 4 or above and Mathematics at Grade B or Grade 5 or above at GCSE.

 

Excludes General Studies and Critical Thinking.

A level in Mathematics (or equivalent) and one other Science subject from the following: Applied Science, Biology, Business Studies, Chemistry, Computing, Design and Technology: Product Design (3D Design), Design Technology: Systems and Control Technology, Economics, Electronics, Engineering, Environmental Management, Environmental Studies, Further Mathematics, Geography, ICT, Marine Science, Mechanics, Physics, Statistics.

Science A-level must include a pass in the practical element.

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

Students for whom English is a Foreign language

We welcome applications from students whose first language is not English. We require evidence of proficiency in English (including writing, speaking, listening and reading):

  • IELTS: 6.5 overall (minimum 6.0 in any component)

We also accept a number of other English language tests. Please click here to see our full list.

INTO University of East Anglia 

If you do not meet the academic and or English requirements for direct entry our partner, INTO University of East Anglia offers guaranteed progression on to this undergraduate degree upon successful completion of a preparation programme. Depending on your interests, and your qualifications you can take a variety of routes to this degree:

International Foundation in General Science FS1

International Foundation in Physical Sciences and Mathematics FS3

Interviews

The majority of candidates will not be called for an interview and a decision will be made via UCAS Track. However, for some students an interview will be requested. You may be called for an interview to help the School of Study, and you, understand if the course is the right choice for you.  The interview will cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.  Where an interview is required the Admissions Service will contact you directly to arrange a convenient time.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year.  We believe that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and to contact admissions@uea.ac.uk directly to discuss this further.

Intakes

The School's annual intake is in September of each year. 
  • A Level AAB including Mathematics and one other Science subject. Science A-levels must include a pass in the practical element.
  • International Baccalaureate 33 points to include HL 6 in Mathematics and one other Science subject. If no GCSE equivalent is held, offer will include Mathematics and English requirements.
  • Scottish Highers Only accepted in combination with Scottish Advanced Highers.
  • Scottish Advanced Highers BBC to include Mathematics and one other Science subject. A combination of Advanced Highers and Highers may be acceptable.
  • Irish Leaving Certificate AAAABB or 4 subjects at H1 and 2 at H2, to include Higher Level Mathematics and one other Science subject.
  • Access Course Pass the Access to HE Diploma with Distinction in 36 credits at Level 3 and Merit in 9 credits at Level 3, to include 12 credits of Mathematics and 12 credits of one other Science subject. Science pathway required.
  • BTEC DDD in a relevant subject. Excluding Public Services. BTEC and A-level combinations are considered - please contact us.
  • European Baccalaureate 80% overall to include at least 85% and 70% from Mathematics and one other Science subject.

Entry Requirement

GCSE Requirements:  GCSE English Language grade 4 and GCSE Mathematics grade 5 or GCSE English Language grade C and GCSE Mathematics grade B. 

General Studies and Critical Thinking are not accepted.  

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

 

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including speaking, listening, reading and writing) at the following level:

  • IELTS: 6.5 overall (minimum 6.0 in any component)

We will also accept a number of other English language qualifications. Review our English Language Equivalences here.

INTO University of East Anglia 

If you do not meet the academic and/or English language requirements for this course, our partner INTO UEA offers guaranteed progression on to this undergraduate degree upon successful completion of a foundation programme. Depending on your interests and your qualifications you can take a variety of routes to this degree:

INTO UEA also offer a variety of English language programmes which are designed to help you develop the English skills necessary for successful undergraduate study:

 

Interviews

The majority of candidates will not be called for an interview. However, for some students an interview will be requested. These are normally quite informal and generally cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year, believing that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and may wish to contact the appropriate Admissions Office directly to discuss this further.

Intakes

The School's annual intake is in September of each year.

Alternative Qualifications

We encourage you to apply if you have alternative qualifications equivalent to our stated entry requirement. Please contact us for further information.

Fees and Funding

Undergraduate University Fees and Financial Support

Tuition Fees

Information on tuition fees can be found here:

UK students

EU Students

Overseas Students

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. 

The University of East Anglia offers a range of Scholarships; please click the link for eligibility, details of how to apply and closing dates.

How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The system allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it must be sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The UCAS code name and number for the University of East Anglia is EANGL E14.

Further Information

If you would like to discuss your individual circumstances with the Admissions Office prior to applying please do contact us:

Undergraduate Admissions Office (Engineering)
Tel: +44 (0)1603 591515
Email: admissions@uea.ac.uk

Please click here to register your details online via our Online Enquiry Form.

International candidates are also actively encouraged to access the University's International section of our website.

    Next Steps

    We can’t wait to hear from you. Just pop any questions about this course into the form below and our enquiries team will answer as soon as they can.

    Admissions enquiries:
    admissions@uea.ac.uk or
    telephone +44 (0)1603 591515