BSc Meteorology and Oceanography with a Year in Industry


The School of Environmental Sciences is one of the longest established, largest and most fully developed Schools of Environmental Sciences in Europe. Our holistic approach to teaching and research, integrating physical, chemical, biological, social and geotechnical sciences into the study of natural and human environments, is truly a modern philosophy for the new millennium.

Watch It

Key facts

This course is accredited by the Institute of Marine Engineering Science and Technology (IMarEST). It is a stamp of excellence and generally involves a rigorous peer-review process, analysing the technical content taught and the processes in place to ensure effective delivery of the programme.


We have been awarded a Queen’s Anniversary Prize for Higher and Further Education for 50 years of ground-breaking environmental science at UEA. The royal accolade from the Queen is the UK’s most prestigious higher education award.

Watch It


What's making the antarctic melt? We've put robots into the ocean to unlock the complexities of warm water.

Read It

Key facts

Environmental Sciences has been ranked 4th in the UK, 11th in Europe and 40th in the World according to the QS World University Rankings 2018.


View our video about Field Courses.

Watch It
This unique degree gives you the chance to learn how the atmosphere and the oceans work and interact. No other UK university offers this combination, but the two disciplines are equally important in understanding the Earth’s climate system and our impact upon it. You’ll also have the chance to gain experience in industry on a year-long placement.

The course is taught jointly by our Environmental Sciences and Mathematics schools, both of which are highly ranked for research – 1st for impact and 7th for quality in the UK respectively – so you’ll benefit from our academics’ diverse and world-class expertise.

The degree incorporates field courses that will expose you to advanced scientific instruments, compulsory modules that lay the scientific foundations for understanding the environment, and a wide range of optional modules that enable you to focus on different themes. You’ll also undertake an independent research project in your final year to bring all of your training together.


The University of East Anglia is currently the only University in the UK where it is possible to study these two specialist subjects side-by-side in a combined degree format. The course is designed to provide you with an insight into how the atmosphere and oceans work and interact. This approach gives you a detailed understanding of the Earth's climate system, alongside the impact of human society on the atmospheric and oceanic systems.

Incorporated into this degree programme is the opportunity to take part in a year in industry, which will make for an invaluable addition to your scientific knowledge and technique. It will increase your employability and gives you the chance to put your first two years of Meteorology and Oceanography learning into practice.

Two week-long field courses in Oceanography and Meteorology provide you with valuable hands-on experience designing experiments and working with scientific instrumentation. You will also receive teaching and support from the School of Mathematics as you learn to use mathematical techniques to investigate and understand the course content. Furthermore our own in-house weather forecasting company, "WeatherQuest" provides valuable teaching support and an opportunity to spend a week working, to gain commercial awareness of the meteorological industry.

Many of our Meteorology and Oceanography students have gained valuable experience on research cruises whilst conducting the fieldwork for their final year project. Graduates of the programme have gone on to work for the British Antarctic Survey, the UK Meteorological Office, WeatherQuest and a variety of universities.

Field Course Options

Field courses and practical classes are an integral part of training our meteorology and oceanography students. You will be introduced to the problems of studying these unique aspects of the planet and learn a variety of practical techniques using specialist equipment through the field courses available.

Course Structure

This four year course follows a similar structure to the BSc Oceanography and Meteorology, but with an additional year of gaining work experience on an industrial placement in your third year. The first year of study comprises compulsory core modules to establish your knowledge on essential topics. You will have the chance to select from optional modules in the second and final year in order to allow you to direct your own studies. In the final year you will also have the opportunity to undertake an independent research project on a subject of your choice.

Year 1
A series of compulsory modules introduce you to the general scientific principles governing our environment, including Global Environmental Challenges and Understanding the Dynamic Planet. Multi-disciplinary modules from the wider Faculty of Science allow you to develop the essential analytical skills you will need during further years – including Maths for Scientists and Field Skills.

Year 2
As the course progresses you will undertake a range of compulsory scientific modules, including Meteorology and Waves, and Tides and Shallow Water Processes. Mathematics for Scientists continues to develop your capacity for mathematical theory. You will also have the option to take a Meteorological Field Course in the Lake District.

Year 3 (Year in Industry)
You will spend your third year on an industrial work placement lasting from 9 to 14 months, gaining relevant experience and developing your skills and knowledge. We have established research links throughout the UK and beyond, and we will help you in identifying and competing for appropriate positions.

Year 4
During your final year of study you will undertake an individual research project, allowing you to investigate a specialist area in professional depth. You also choose from a range of modules relevant to the oceans and/or atmosphere, allowing you to advance your physical/dynamical understanding of the climate system and its variability, and/or to develop skills in atmospheric and/or marine chemistry.

You will also undertake a free choice module from any school across the university, subject to permission. This gives you the opportunity to enhance your scientific skills with business acumen or take a foreign language to improve your international employability.


A variety of assessment methods are used in different modules, ranging from 100% coursework to 100% examination. Coursework assessment methods include essays, written discussions, class tests, problem sheets, laboratory reports, field exercises, field notebooks and seminar presentations. In most modules the assessment is weighted 67% examination, 33% coursework. Skills based modules and field modules are assessed by 100% coursework. The ‘Work Based Learning module’ is partly assessed through a Technical Report, double marked by Environmental Science and Continuing Education specialists.

Year In Industry

Completion of a Year in Industry programme will ensure you graduate with relevant work experience, putting you one step ahead of other students. This exciting degree programme provides you with this opportunity.

There is no greater asset in today’s competitive job market than relevant work experience. A Year in Industry will give you first-hand knowledge of not only the mechanics of how your chosen field operates but it will also greatly improve your chances of progressing within that sector as you seal valuable contacts and insight. These courses will also enhance your studies as theory is transformed into reality in a context governed by very real, time and financial constraints.

Our Industrial Links

We have well-established commercial connections throughout the UK and beyond. Over 100 of our students have undertaken year-long placements as part of this programme. The fine work undertaken by the students leads to an ever growing network of employers who have experienced the positive benefits which come from offering a placement opportunity. We can help you to tap into this network and also provide other ideas of organisations who you might contact. Our students have worked in environmental roles within Local and National Government, in SMEs and Multinationals, for Environmental Consultancies and Research Institutes and with Conservation groups and NGOs.

Financial Benefits

A big attraction to this type of course, apart from the enhanced career prospects, is that students will pay much reduced tuition fees for that year (see fees and funding tab). In addition, of course, you are typically paid by the placement provider during the year, a great way to help fund your studies.

For the latest on financial arrangements for our Year in Industry students please visit the UEA Finance webpage.

How it Works

The Year in Industry degree programmes are four years in length with the work placement taking place during your third year. Placements constitute a minimum of nine months full-time employment and a maximum of 14 months.

In Years 1 and 2, we will help you prepare for an industrial placement by running workshops to raise awareness of key issues and to encourage networking. We will make sure you are fully aware of all the organisations who have previously hosted our placement students. We will also advertise all current placement opportunities of which we are aware. Our Careers service will be on hand to help with your applications. With this support, you will take the lead in securing your own placement - not only will this ensure that you work within your preferred field of Environmental Sciences, it will also provide you with the essential job-hunting skills you will require after graduation. Throughout the work placement itself, you will keep in close contact with an assigned mentor at UEA and your mentor will also visit you in your place of work during the year. In your placement year you will also undertake a Work Based Learning module which will help you to reflect on and get the very most from the placement experience.

Please note that we cannot guarantee any student a work placement as this decision rests with potential employers and students will be expected to source these placements themselves. If you were unable to secure a work placement by the end of your second year you will have the option to apply to be transferred onto the equivalent three-year degree programme without a Year in Industry.

“The Year in Industry was one of the best choices I could have made for my career. It enabled me to gain valuable technical skills and responsibilities, essential for improving my employability as well as developing industry contacts”.

Bex Holmes, BSc Environmental Sciences with a Year in Industry – Placement at Atkins Ltd

“I was reemployed by my placement provider BRE and owe this important start in life and my career to the Year in Industry programme. I really think it provides opportunities and essential experience for the workplace and hope it goes from strength to strength in the future”.

Roger Connick, BSc Environmental Sciences with a Year in Industry – Placement at BRE.

For further information, please contact Dr Stephen Dorling, Year in Industry Co-ordinator, e-mail:


Course Modules 2018/9

Students must study the following modules for 100 credits:

Name Code Credits


What are the most pressing environmental challenges facing the world today? How do we understand these problems through cutting-edge environmental science research? What are the possibilities for building sustainable solutions to address them in policy and society? In this module you will tackle these questions by taking an interdisciplinary approach to consider challenges relating to climate change, biodiversity, water resources, natural hazards, and technological risks. In doing so you will gain an insight into environmental science research 'in action' and develop essential academic study skills needed to explore these issues.




You will cover differentiation, integration, vectors, partial differentiation, ordinary differential equations, further integrals, power series expansions, complex numbers and statistical methods as part of this module. In addition to the theoretical background there is an emphasis on applied examples. Previous knowledge of calculus is assumed. This module is the first in a series of three maths modules for those across the Faculty of Science that provide a solid undergraduate mathematical training. The follow-on modules are Mathematics for Scientists B and C.




This module comprises two parts: "Probability" and "Mechanics" Probability is the study of the chance of events occurring. It has important applications to understanding the likelihood of multiple events happening together and therefore to rational decision-making. In the first part of this module, you will start by studying probability as a measurement of uncertainty, and looking at statistical experiments and Bayes' theorem. You will then consider both discrete and continuous probability distributions and the concept of expectation. Finally you will consider applications of probability, including Markov chains and reliability theory. Newtonian mechanics provides a basic description of how particles and rigid bodies move in response to applied forces. In the second part of the module you will study Newton's laws of motion and how they can be applied to particle dynamics, vibrations, motion in polar coordinates, and conservation laws.




You will develop a range of transferable skills, tools and resources that are widely used in research across the Environmental Sciences and Geography. It aims to provide a broad understanding of the research process through activities that involve formulating research questions, collecting data using appropriate sources and techniques, collating and evaluating information and presenting results. A week-long residential field course, held at Easter and based at Slapton Ley, Devon, applies field, lab and other skills to a variety of environmental science and geography topics. Depending on the size of the cohort, students on selected degree programmes may be offered the option of an alternative field course arrangement.




Understanding of natural systems is underpinned by physical laws and processes. You will explore the energy, mechanics, and physical properties of Earth materials and their relevance to environmental science using examples from across the Earth's differing systems. The formation, subsequent evolution and current state of our planet are considered through its structure and behaviour - from the planetary interior to the dynamic surface and into the atmosphere. You will study Plate Tectonics to explain Earth's physiographic features - such as mountain belts and volcanoes - and how the processes of erosion and deposition modify them. The distribution of land masses is tied to global patterns of rock, ice and soil distribution and to atmospheric and ocean circulation. You will also explore geological time - the 4.6 billion year record of changing conditions on the planet - and how geological maps can be used to understand Earth history. This course provides you with an introduction to geological materials - rocks, minerals and sediments - and to geological resources and natural hazards.



Students will select 20 credits from the following modules:

Students will be assigned to 20 credits from the following modules. Assignments will be made according to previous Chemistry qualifications.

Name Code Credits


The habitability of planet Earth depends on physical and chemical systems that control everything from the weather and climate to the growth of all living organisms. This module introduces you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret them. It leads naturally to second and third year study of these systems in more detail, but even if you choose to study other aspects of environmental sciences, a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The module is made up of two distinct components. One focuses on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) The other focuses on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). Interrelationships between these components are explored throughout. Teaching of this module is through a mix of lectures, laboratory practical classes, workshops and a half-day field trip. This module provides a Basic Chemistry introduction for those students who have little or no background in chemistry prior to joining UEA.




The habitability of planet Earth depends on physical and chemical systems that control everything from the weather and climate to the growth of all living organisms. This module introduces you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret them. It leads naturally to second and third year study of these systems in more detail, but even if you choose to study other aspects of environmental sciences, a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The module is made up of two distinct components. One focuses on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) The other focuses on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). Interrelationships between these components are explored throughout. Teaching of this module is through a mix of lectures, laboratory practical classes, workshops and a half-day field trip. This module is for students with previous experience of chemistry.



Students must study the following modules for 100 credits:

Name Code Credits


With guidance from a supervisor, you will choose a topic, design the research and collect, analyse and interpret data. You will report on progress at various stages: in the selection of a topic, the detailed plan, an interim report and an oral presentation. A final report in the form of a dissertation not exceeding 10,000 words is required. When planning the project and again after completing the report, you will reflect on the range of subject-specific and generic skills acquired through your degree and how these are reinforced and complemented by skills acquired through your project. A final item of summative work assesses the clarity by which you communicate and evidence your range of skills in the form of a covering letter and cv for a potential job application. To further support the transition to employment, you can present a formative research poster that summarises the main aspects of the work to prospective employers. This module is compulsory for all degree courses in the School of Environmental Sciences and is an independent piece of research.




This module is the second in a series of three mathematical modules for students across the Faculty of Science. You will cover vector calculus (used in the study of vector fields in subjects such as fluid dynamics and electromagnetism), time series and spectral analysis (a highly adaptable and useful mathematical technique in many science fields, including data analysis), and fluid dynamics (which has applications to the circulation of the atmosphere, ocean, interior of the Earth, chemical engineering, and biology). There is a continuing emphasis on applied examples.




This module is the third in a series of three mathematical units for students across the Faculty of Science. It covers matrix algebra and numerical methods, partial differential equations and solid mechanics. There is a continuing emphasis on applied examples, and the use of numerical computing software (Matlab) is extended with a dedicated programming component. The module is taught by mathematicians with considerable expertise in the use of mathematics in the natural/environmental sciences and is largely designed to equip students with the tools necessary for advanced second and third level modules, particularly those in the physical sciences.




The weather affects everyone and influences decisions that are made on a daily basis around the world. From whether to hang your washing out on a sunny afternoon, to which route a commercial aircraft takes as it travels across the ocean, weather plays a vital role. With that in mind, what actually causes the weather we experience? In this module you'll learn the fundamentals of the science of meteorology. You'll concentrate on the physical process that allow moisture and radiation to transfer through the atmosphere and how they ultimately influence our weather. The module contains both descriptive and mathematical treatments of radiation balance, thermodynamics, dynamics, boundary layers, weather systems and the water cycle. The module is assessed through a combination of one piece of coursework and an exam, and is designed in a way that allows those with either mathematical or descriptive abilities to do well, although a reasonable mathematical competence is essential, including basic understanding of differentiation and integration.




This module gives you an understanding of the physical processes occurring in the basin-scale ocean environment. We will introduce and discuss large scale global ocean circulation, including gyres, boundary currents and the overturning circulation. Major themes include the interaction between ocean and atmosphere, and the forces which drive ocean circulation. You should be familiar with partial differentiation, integration, handling equations and using calculators. Shelf Sea Dynamics is a natural follow-on module and builds on some of the concepts introduced here. We strongly recommend that you also gain oceanographic fieldwork experience by taking the 20-credit biennial Marine Sciences field course.




The shallow shelf seas that surround the continents are the oceans that we most interact with. They contribute a disproportionate amount to global marine primary production and CO2 drawdown into the ocean, and are important economically through commercial fisheries, offshore oil and gas exploration, and renewable energy developments (e.g. offshore wind farms). You will explore the physical processes that occur in shelf seas and coastal waters, their effect on biological, chemical and sedimentary processes, and how they can be harnessed to generate renewable energy. You will develop new skills during this module that will support careers in the offshore oil and gas industry, renewable energy industry, environmental consultancy, government laboratories (e.g. Cefas) and academia. The level of mathematical ability required to take this module is similar to Ocean Circulation and Meteorology I. You should be familiar with radians, rearranging equations and plotting functions.



Students will select 20 credits from the following modules:

Students must submit a request to the School for a place on fieldcourses.

Name Code Credits


This module will build upon material covered in Meteorology I, by covering topics such as synoptic meteorology, weather hazards, micro-meteorology, further thermodynamics and weather forecasting. The module includes a major summative coursework assignment based on data collected on a UEA meteorology fieldcourse in a previous year.




Weather is one of the most popular topics of conversation. But how, specifically, does it present risks and opportunities, to people, organisations and to the wider environment? In this module you will develop a clear understanding of these linkages and an evidence base to draw on in future roles in which weather is a factor. You'll learn how to confidently source a diverse range of real-time weather information and you'll practice analysing such data, leading subsequently to successful interpretation and effective communication, both written and in front of the camera. You'll see, first hand, how meteorology depends upon computer systems for the efficient sharing, processing and visualisation of weather information. Being taught by weather practitioners with long experience of providing weather services to users, you will get the inside track on what it's like to work in weather. Weather Forecasting is one central theme and application which will provide a focus for learning. How are forecasts made and delivered, who uses forecasts and what are their distinctive needs? Success in forecasting depends in part on a good physical understanding of atmospheric processes - through practical work, we'll study those processes and use real examples of weather systems and events to reinforce the learning. At the end of the module, through an embedded week-long Easter residential fieldcourse, you'll apply your enhanced process understanding and forecasting knowledge in a hands-on way to design and implement meteorological field experiments, testing hypotheses through the collection and interpretation of field data collected using weather sensors. You'll write up your choice of fieldcourse experiment for assessment, after first receiving informal feedback on a related poster presentation.



Students must study the following modules for 120 credits:

Name Code Credits


Gaining work experience and developing your employability are critical for your future career. The year in industry programme will help you do this. This module represents the year spent on work placement by students registered on an ENV programme incorporating a year in industry. You'll be offered help in finding a placement, undertake a year long work placement, and you'll also be encouraged to reflect on your learning as you go to help you make the most of your experience. You'll begin by reflecting on your existing employability skills and developing a plan to secure a good year in industry placement. You'll then be offered help in finding, applying for and going through recruitment processes for year in industry placements. On placement, you'll develop a range of different experiences and valuable employability skills and you'll be assigned a UEA mentor who will help you reflect on your learning and experience throughout your placement. You'll be assessed on a pass/fail basis by developing and reflecting on a placement portfolio that exhibits the skills you've gained during your placement. At the end of the module you'll have developed a wide range of different workplace experiences and employability skills as well as the ability to reflect on these to ensure you get the most out of them.



Students must study the following modules for 40 credits:

Name Code Credits


With guidance from a supervisor, you will choose a topic, design the research and collect, analyse and interpret data. You will report on progress at various stages: in the selection of a topic, the detailed plan, an interim report and an oral presentation. A final report in the form of a dissertation not exceeding 10,000 words is required. When planning the project and again after completing the report, you will reflect on the range of subject-specific and generic skills acquired through your degree and how these are reinforced and complemented by skills acquired through your project. A final item of summative work assesses the clarity by which you communicate and evidences your range of skills in the form of a covering letter and cv for a potential job application. To further support the transition to employment you can present a formative research poster that summarises the main aspects of the work to prospective employers. This module is compulsory for all degree courses in the School of Environmental Sciences and is an independent piece of research.



Students will select 0 - 60 credits from the following modules:

Name Code Credits


What sets the mean global temperature of the world? Why are some parts of the world arid whilst others at the same latitudes are humid? This module aims to provide you with an understanding of the processes that determine why the Earth's climate (defined, for example, by temperature and moisture distribution) looks like it does, what the major circulation patterns and climate zones are and how they arise. You will study why the climate changes in time over different timescales, and how we use this knowledge to understand the climate systems of other planets. This module is aimed at you if you wish to further your knowledge of climate, or want a base for any future study of climate change, such as the Meteorology/Oceanography or Climate Change degrees.




The aim of the module is to show how environmental problems may be solved from the initial problem, to mathematical formulation and numerical solution. Problems will be described conceptually, then defined mathematically, then solved numerically via computer programming. The module consists of lectures on numerical methods and computing practicals; the practicals being designed to illustrate the solution of problems using the methods covered in lectures. The module will guide students through the solution of a model of an environmental process of their own choosing. The skills developed in this module are highly valued by prospective employers.




What do you know about the drivers of climate change? Carbon dioxide (CO2) is the greenhouse gas that has, by far, the greatest impact on climate change, but how carbon cycles through the Earth is complex and not fully understood. Predicting future climate or defining 'dangerous' climate change is therefore challenging. In this module you will learn about the atmosphere, ocean and land components of the carbon cycle. We cover urgent global issues such as ocean acidification and how to get off our fossil fuel 'addiction', as well as how to deal with climate denialists.



Students will select 0 - 40 credits from the following modules:

Name Code Credits


This module explores the evolution, biodiversity and ecology of bacteria, diatoms, coccolithophores and nitrogen fixers, and the physiology and distribution of zooplankton. Example ecosystems such as the Antarctic, mid ocean gyres and Eastern Boundary Upwelling Systems will be studied in detail and predictions of the impact of environmental change (increasing temperature, decreasing pH, decreasing oxygen, and changes in nutrient supply) on marine ecosystem dynamics will be examined. Biological oceanographic methods will be critically evaluated. The module will include a reading week in week 7 and a voluntary employability visit to the Centre for the Environment, Fisheries and Aquaculture Science (CEFAS). You are expected to have some background in biology, e.g. have taken a biology, ecology or biogeochemistry based second year module.




This module examines the geological evidence for climatic change through the Quaternary Period (the last 2.6 million years) and the longer-term evolution of climate through the Cenozoic Era (the last 65 million years). You will explore the interpretation and causal mechanisms behind these major global environmental changes using a diverse range of approaches - isotope geochemistry, sedimentology, palaeoecology and organic geochemistry. We will focus on the geochemical, biological and sedimentological information that can be obtained from marine sediments, ice cores, and terrestrial environments and use these records to reconstruct the timing extent and magnitude of selected climatic events in the geological record.



Students will select 0 - 40 credits from the following modules:

Please note that ENV-5020K does not run every year and note that MTHE6007B Dynamical Oceanography and MTHD6018B Dynamical Meteorology run in alternate years.

Name Code Credits


The ocean is an important component of the Earth's climate system. You will cover mathematical modelling of the large-scale ocean circulation and oceanic wave motion. You will build upon the techniques in fluid dynamics and differential equations that you developed in year two. You will then use these techniques to explain some interesting phenomena in the ocean that are relevant to the real world. We begin by examining the effects of rotation on fluid flows. This naturally leads to the important concept of geostrophy, which enables ocean currents to be inferred from measurements of the sea surface height or from vertical profiles of seawater density. Geostrophy also plays a key role in the development of a model for the global scale circulation of abyssal ocean. The role of the wind in driving the ocean will be examined. This enables us to model the large-scale circulation of the ocean including the development of oceanic gyres and strong western boundary currents, such as the Gulf Stream. You will conclude by examining the role of waves, both at the sea surface and internal to the ocean. The differences between wave motion at mid-latitudes and the Equator are examined, as is the roll of the Equator as a wave-guide. The equatorial waves that you will study are intimately linked with the El Nino phenomenon that affects the climate throughout the globe.




The first three days of the fieldcourse involve lectures, seminars and practical sessions on physical, chemical and biological oceanographic techniques, as well as analysis of data and planning of field activities. The next five days see you undertake practical activities using oceanographic research ships and laboratory facilities. On the final day, you'll be involved in data interpretation and presentations. The number of days undertaken will also depend on the number of students undertaking the fieldcourse, so the above days are flexible. This module runs every 2 years and only goes ahead if there are sufficient students enrolled.



Students will select 0 - 20 credits from the following modules:

PLEASE NOTE: Students must check that the module chosen from this range does not have a timetable clash with modules already selected, noting that no more than one module with the same timetable slot e.g. EE, can be taken in one semester. Students must submit a request to the School for a place on fieldcourses.

Name Code Credits


Explore how chemical, physical and biological influences shape the biological communities of rivers, lakes and estuaries in temperate and tropical regions. Three field visits and laboratory work, usually using microscopes and sometimes analysing water quality, provide an important practical component to this module. A good complement to other ecology modules, final-year Catchment Water Resources and modules in development studies or geography, it can also be taken alongside Aquatic Biogeochemistry or other geochemical and hydrology modules. Students selecting this module must have a background in basic statistical analysis of data.




In this module, you will adopt an integrated approach to studying surface water and groundwater resources in river basins. You will address the fundamental requirement for an interdisciplinary catchment-based approach to managing and protecting water resources that includes an understanding of land use and its management. The module content includes the design of catchment monitoring programmes, nutrient mass balance calculations, river restoration techniques, an overview of UK and European agri-environmental policy and approaches to assessing and mitigating catchment flooding.




You will develop your skills and understanding in the integrated analysis of global climate change, using perspectives from both the natural sciences and the social sciences. You will gain a grounding in the basics of climate change science, impacts, adaptation, mitigation and their influence on and by policy decisions. This module also offers you a historical perspective on how climate policy has developed, culminating in the December 2015 Paris Agreement. Finally, it considers what will be required to meet the goal of the Paris Agreement to limit global warming to well below 2 #C above pre-industrial levels.




Modern everyday life rests fundamentally on the availability of energy. Since the 1970s, however, serious concerns have been raised about the sustainability of current energy systems. Traditionally, these problems have been analysed (and solutions proposed) from within the engineering and physical sciences. Understanding, managing and attempting to solve energy problems, however, demands a thorough appreciation of how people, at a range of scales, engage with energy in the course of their daily lives. This is a critical challenge for the social sciences, and will be a core focus of this module. Through this module, you will discover and explore a range of social science perspectives on the inter-relationships between energy and people. You will learn how to apply these ideas to contemporary energy problems and use them to generate your own visions for a sustainable energy future. You'll also be given the chance to work as part of a team and to communicate your ideas through both written and oral presentation. You'll begin by tracing the history and development of energy intensive societies and everyday lives as a means of understanding how energy has emerged as a key sustainability problem. You'll then go into more depth around different theories of social and technical change before exploring how these can be used to critically analyse a range of people-based solutions to energy problems that are currently being tried and tested around the world. You'll learn through a combination of lectures and seminars involving interactive group projects, class debates, practical exercises and student-led learning. At the end of the module, you will have developed the knowledge, skills and experience necessary to allow you to apply theories of social and technical change to a range of real-world energy problems. You'll be able to develop and critically analyse your own (and already existing) visions of a sustainable energy future, and you'll be able to creatively communicate these ideas to a range of different audiences. Please note, this is a strongly social science based module and is not recommended for students without a strong grounding in social science thinking and principle.




The most significant obstacles to problem solving are often political, not scientific or technological. This module examines the emergence and processes of environmental politics. It analyses these from different theoretical perspectives, particularly theories of power and public policy making. The module is focused on contemporary examples of politics and policy making at UK, EU and international levels. The module supports student-led learning by enabling you to select (and develop your own theoretical interpretations of) 'real world' examples of politics. Assessment will be via seminar presentations and a case study essay. The module assumes no prior knowledge of politics.




Geophysical hazards such as earthquakes, volcanic eruptions, tsunamis and landslides have significant environmental and societal impacts. This module focuses on the physical basis and analysis of each hazard, their global range of occurrence, probability of occurrence and their local and global impact. You will address matters such as hazard monitoring, modelling and assessment, and consider approaches towards risk mitigation and the reduction of vulnerability (individual and societal), with an emphasis on their practical implementation. Scenarios and probabilities of mega-disasters are also investigated. All the teaching faculty involved have practical experience of supplying professional advice on these hazards (and related risks) in addition to their own research involvement. A basic knowledge of physical science and of mathematics is assumed e.g. use of logs, exponentials, powers, cosines, rearrangement of equations.




Hydrology and hydrogeology are Earth Science subjects concerned with the assessment of the natural distribution of water in time and space and the evaluation of human impacts on the water. This module provides an introduction to geological controls on groundwater occurrence, aquifer characteristics, basic principles of groundwater flow, basic hydrochemistry, an introduction to catchment hydrology, hydrological data collection and analysis, runoff generation processes and the principles of rainfall-runoff modelling. Practical classes develop analytical skills in solving problems as well as field skills in pumping test analysis and stream gauging. A field excursion in Norfolk is also offered in this module.




This module examines the principles of energy science and technologies including energy generation and conversion, such as renewables, bioenergy and batteries. It provides a systematic and integrated account of the issues in energy resources and conversion. This knowledge is used to make a rational analysis of energy availability, applications and selections from physical, technical and environmental considerations. It also provides students with the opportunity to explore the future of energy provision in greater depth.




Environmental economics provides a set of tools and principles which can be useful in understanding natural resource management issues. This module introduces you to key principles and tools of environmental economics for students who have not studied the subject previously. It then explores how these principles can be applied to address a number of complex economy-environment problems including climate change, over-fishing and water resources management. In this module you will have the opportunity to practically apply cost-benefit analysis as a framework for decision-making and will gain knowledge on the key non-market valuation techniques that are used to monetarily value environmental goods and services. At the end of the module you will have gained insights into how environmental economics is used in developing natural resource management policy as well as some of the challenges in using environmental economics in policy-making.




The purpose of this module is to give you a solid grounding in the essential features of programming using the Java programming language. The module is designed to meet the needs of the student who has not previously studied programming.




You will gain an introduction to the theory of waves. You will study aspects of linear and nonlinear waves using analytical techniques and Hyperbolic Waves and Water Waves will also be covered. It requires some knowledge of hydrodynamics and multi-variable calculus. The unit is suitable for those with an interest in Applied Mathematics.




Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. In some cases optional modules can have limited places available and so you may be asked to make additional module choices in the event you do not gain a place on your first choice. Where this is the case, the University will endeavour to inform students.

Further Reading

Entry Requirements

  • A Level ABB including Mathematics
  • International Baccalaureate 32 points including HL5 in Maths and HL5 in one other subject. If no GCSE equivalent is held, offer will include Mathematics and English requirements.
  • Scottish Highers Only accepted in combination with Scottish Advanced Highers.
  • Scottish Advanced Highers BCC including Mathematics. A combination of Advanced Highers and Highers may be acceptable.
  • Irish Leaving Certificate AABBBB or 2 subjects at H1 and 4 at H2 including Mathematics
  • Access Course Pass the Access to HE Diploma with Distinction in 30 credits at Level 3 and Merit in 15 credits at Level 3 including Distinction in 12 Level 3 credits in Mathematics
  • BTEC DDM in a related subject. Applied Science or Applied Science (Medical Science) preferred. Excluding Public Services on its own. BTEC and A-level combinations are considered - please contact us.
  • European Baccalaureate Overall 75% including 70% in Mathematics

Entry Requirement

GCSE Requirements:  GCSE English Language grade 4 and GCSE Mathematics grade 4 or GCSE English Language grade C and GCSE Mathematics grade C.  

General Studies and Critical Thinking are not accepted.  

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including speaking, listening, reading and writing) at the following level:

  • IELTS: 6.5 overall (minimum 6.0 in any component)

We will also accept a number of other English language qualifications. Review our English Language Equivalences here.

INTO University of East Anglia 

If you do not yet meet the English language requirements for this course, INTO UEA offer a variety of English language programmes which are designed to help you develop the English skills necessary for successful undergraduate study:


The majority of candidates will not be called for an interview. However, for some students an interview will be requested. These are normally quite informal and generally cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year, believing that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and may wish to contact the appropriate Admissions Office directly to discuss this further.


The School's annual intake is in September of each year.

Alternative Qualifications

We encourage you to apply if you have alternative qualifications equivalent to our stated entry requirement. Please contact us for further information.

Fees and Funding

Undergraduate University Fees and Financial Support

Tuition Fees

Information on tuition fees can be found here:

UK students

EU Students

Overseas Students

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. 

The University of East Anglia offers a range of Scholarships; please click the link for eligibility, details of how to apply and closing dates.

How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The system allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it must be sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The UCAS code name and number for the University of East Anglia is EANGL E14.

Further Information

If you would like to discuss your individual circumstances with the Admissions Service prior to applying please do contact us:

Undergraduate Admissions Service
Tel: +44 (0)1603 591515

Please click here to register your details via our Online Enquiry Form.

International candidates are also actively encouraged to access the University's International section of our website.

    Next Steps

    We can’t wait to hear from you. Just pop any questions about this course into the form below and our enquiries team will answer as soon as they can.

    Admissions enquiries: or
    telephone +44 (0)1603 591515