BSc Mathematics with Business

Video

The School has a strong international reputation for its research and students are taught by leading experts in a broad range of topics in Mathematics.

Watch It

Key facts

(The Guardian, 2017)

Article

Our mathematicians have shown how crucial oceans are for sustaining life on distant planets, bringing us one step closer to finding somewhere aliens could call home.

Read It

Key facts

(2014 Research Excellence Framework)

Article

Landmine detection isn't easy. Everything from rubbish to rabbits can cause a false alarm. Maths PhD student John Schofield has been working on algorithms to make clearing minefields safer.

Read It

Article

Summer Maths Events for Year 12 July 2017

Offering Year 12 students the chance to experience an exciting and interactive two-day residential (2-4 July) summer school or a one day workshop (10 July) to help enhance their personal statement for the UCAS application.

Read It
Studying with us means that you will benefit from internationally recognised, research-led teaching from both the School of Mathematics and the Norwich Business School, ensuring you graduate with a deep understanding of mathematics and the role it plays in contemporary business.

Your lectures are complimented with small group teaching providing you with quality contact time with our world class lecturers, while learning through first-hand experience. We were ranked 7th in the UK for the quality of our research output (REF 2014) which means that you will learn in the most up-to-date environment. This course is designed so that you can choose to either focus on one specific area of business studies, or a wider range of fields.

Overview

Mathematics is an exciting and challenging subject that plays a central role in many aspects of modern life; it provides the language and techniques to handle the problems from many disciplines. Mathematics is also studied for its own sake, with a structure built upon thousands of years of invention and discovery.

Mathematics has a key role to play in many aspects of modern business. This degree programme combines the development of mathematical concepts and advanced techniques with mathematical expertise relating to the business world. It is offered in association with Norwich Business School, which has an excellent reputation for teaching and for the development of professional business skills. This course gives you the opportunity to study with leading experts in both Mathematics and Business, whilst developing your language and communication skills.

You will have the opportunity to study a wide variety of business-related components, including modules such as Finance, Economics, Management, Accountancy and Actuarial Science. The flexibility of our degree programme means that you can choose to focus on one specific field of business study or pursue a wider range of subjects, according to your own interests.

Through this degree programme you will develop an understanding of the underlying theory of statistics, which will give you a head start in many different fields of business. Following your degree you could choose to enter a profession traditionally associated with mathematics, such as accountancy, banking and finance, statistics and data analysis, and secondary or higher education or roles in which logical thought and problem solving are important.

These include engineering, information technology, logistics and distribution, central or local government, and other business areas. Some of our recent graduates have decided to pursue careers in accountancy and as actuaries. Many of our graduates also choose to continue their studies by going on to a higher degree.

Course Structure

This three-year degree programme is designed to allow you to attain the same grounding in essential mathematics and statistics as a BSc Mathematics student, through a similar range of module choices. However, on this course you also have the opportunity to undertake business modules offered by Norwich Business School and so create your own unique degree pathway. Some students opt to study a range of fields within business, while others choose to specialise along specific threads, such as accounting and finance, business law or economics.

Year 1
In your first year you will study principles of algebra and calculus in addition to computing and probability. You will also take an Introduction to Business module.

Year 2
Core modules in mathematics are compulsory in the second year, as they prepare you for any of the mathematics modules in your forthcoming final year. In addition you will choose from a wide variety of business modules.

Year 3
In your final year of the programme there are no compulsory modules, and you are free to choose from a range of both mathematical and business modules, allowing you to specialise in a certain area or broaden your interests.

Assessment

Several assessment methods are used in different modules, ranging from 100% coursework to 100% examination. Most mathematics modules are assessed 80% by examination and 20% by coursework. The coursework component is made up of problems set from an example sheet, to be handed in, marked and returned together with solutions. For some modules there are also programming assignments and/or class tests. The modules you choose from the Norwich Business School are also assessed in a range of different ways, appropriate to the particular topic.

Hear from some of our current students

Watch our Mathematics Animation

Course Modules 2017/8

Students must study the following modules for 120 credits:

Name Code Credits

CALCULUS AND MULTIVARIABLE CALCULUS

(a) Complex numbers. (b) Vectors. (c) Differentiation. Taylor and Maclaurin series. (d) Integration: Applications: curve sketching, areas, arc length. (e) First-order, second-order, constant coefficient ordinary differential equations. Reduction of order. Numerical solutions using MAPLE. Partial derivatives, chain rule. (f) Line integrals. Multiple integrals, including change of co-ordinates by Jacobians. Green's theorem in the plane. (g) Euler type and general linear ODEs. (h) Divergence, gradient and curl of a vector field. Scalar potential and path independence of line integral. Divergence and Stokes' theorems. (i) Introduction to Matlab.

MTHA4005Y

40

INTRODUCTION TO BUSINESS (2)

Introduction to Business is organised in thematic units across semesters 1 and 2, aiming to provide a platform for understanding the world of management and the managerial role. The module explores the business environment, key environmental drivers and functions of organisations, providing an up-to-date view of current issues faced from every contemporary enterprise such as business sustainability, corporate responsibility and internationalisation. There is consideration of how organisations are managed in response to environmental drivers. To address this aspect, this module introduces key theoretical principles in lectures and seminars are designed to facilitate fundamental study skills development, teamwork and practical application of theory. By the end of this module, students will be able to understand and apply key concepts and analytical tools in exploring the business environment and industry structure respectively. This module is for NON-NBS students only.

NBS-4008Y

20

LINEAR ALGEBRA

In the first semester we develop the algebra of matrices: Matrix operations, linear equations, determinants, eigenvalues and eigenvectors, diagonalization and geometric aspects. This is followed in the second semester by vectors space theory: Subspqaces, basis and dimension, linear maps, rank-nullity theorem, change of basis and the characteristic polynomial.

MTHA4002Y

20

REAL ANALYSIS

This module is concerned with the mathematical notion of a limit. We will see the precise definition of the limit of a sequence of real numbers and learn how to prove that a sequence converges to a limit. After studying limits of infinite sequences, we move on to series, which capture the notion of an infinite sum. We then learn about limits of functions and continuity. Finally, we will learn precise definitions of differentiation and integration and see the Fundamental Theorem of Calculus.

MTHA4003Y

20

SETS, NUMBERS AND PROBABILITY

Basic set-theoretic notation, functions. Proof by induction, arithmetic, rationals and irrationals, the Euclidean algorithm. Styles of proof. Elementary set theory. Modular arithmetic, equivalence relations. Countability. Probability as a measurement of uncertainty, statistical experiments and Bayes' theorem. Discrete and continuous distributions. Expectation. Applications of probability: Markov chains, reliability theory.

MTHA4001Y

20

Students must study the following modules for 80 credits:

Name Code Credits

ALGEBRA

We introduce groups and rings, which together with vector spaces are the most important algebraic structures. At the heart of group theory in Semester I is the study of symmetry and the axiomatic development of the theory, groups appear in many parts of mathematics. The basic concepts are subgroups, Lagrange's theorem, factor groups, group actions and the Isomorphism Theorem. In Semester II we introduce rings, using the Integers as a model and develop the theory with many examples related to familiar concepts such as substitution and factorisation. Important examples of commutative rings are fields, domains, polynomial rings and their quotients.

MTHA5003Y

20

ANALYSIS

This module covers the standard basic theory of the complex plane. The areas covered in the first semester, (a), and the second semester, (b), are roughly the following: (a) Continuity, power series and how they represent functions for both real and complex variables, differentiation, holomorphic functions, Cauchy-Riemann equations, Moebius transformations. (b) Topology of the complex plane, complex integration, Cauchy and Laurent theorems, residue calculus.

MTHA5001Y

20

DIFFERENTIAL EQUATIONS AND APPLIED METHODS

(a) Ordinary Differential Equations: solution by reduction of order; variation of parameters for inhomogeneous problems; series solution and the method of Frobenius. Legendre's and Bessel's equations: Legendre polynomials, Bessel functions and their recurrence relations; Fourier series; Partial differential equations (PDEs): heat equation, wave equation, Laplace's equation; solution by separation of variables. (b) Method of characteristics for hyperbolic equations; the characteristic equations; Fourier transform and its use in solving linear PDEs; (c) Dynamical Systems: equilibrium points and their stability; the phase plane; theory and applications.

MTHA5004Y

20

FLUID DYNAMICS - THEORY AND COMPUTATION

(a) Hydrostatics, compressibility. Kinematics: velocity, particle path, streamlines. Continuity, incompressibility, streamtubes. Dynamics: Material derivative, Euler's equations, vorticity and irrotational flows. Velocity potential and streamfunction. Bernoulli's equation for unsteady flow. Circulation: Kelvin's Theorem, Helmholtz's theorems. Basic water waves. (b) Computational methods for fluid dynamics; Euler's method and Runge-Kutta methods and their use for computing particle paths and streamlines in a variety of two-dimensional and three-dimensional flows; numerical computation and flow visualisation using Matlab; convergence, consistency and stability of numerical integration methods for ODEs. (c) Theory of Irrotational and Incompressible Flows: velocity potential, Laplace's Equation, sources and vortices, complex potential. Force on a body and the Blasius theorem. Method of images and conformal mappings.

MTHA5002Y

20

Students will select 20 credits from the following modules:

Name Code Credits

INTRODUCTION TO FINANCIAL AND MANAGEMENT ACCOUNTING (2)

This module provides a foundation in the theory and practice of accounting and an introduction to the role, context and language of financial reporting and management accounting. The module assumes no previous study of accounting. It may be taken as a standalone course for those students following a more general management pathway or to provide a foundation to underpin subsequent specialist studies in accounting. This module is for NON-NBS students only.

NBS-4010Y

20

INTRODUCTION TO ORGANISATIONAL BEHAVIOUR (2)

The overall aim of this module is for students to develop an understanding of the structure, functioning, and performance of organisations with particular reference to the behaviour of the individuals and groups who work within them. Specifically, the module aims are to: # Develop an appreciation of the nature and historical development of organisational behaviour (OB). # Introduce key concepts and theories in organisational behaviour. # Develop an understanding of the linkages between OB research, theory, and practice. # Develop analytical and academic writing skills. This module is for NON-NBS students only.

NBS-4011Y

20

PRINCIPLES OF MARKETING

This module is a general introduction and foundational grounding to Marketing. It is concerned with marketing functions of an organisation and seeks to develop awareness and understanding of marketing as an integrated business activity. It focuses on the theoretical frameworks which underpin an organisation's responses to market demand. Additionally, it considers examples of marketing programmes for a variety of organisational contexts to provide an industry perspective to theory. It is suitable for all UEA students and is a standalone module.

NBS-4006Y

20

Students will select 20 credits from the following modules:

Name Code Credits

INFORMATION SYSTEMS FOR MANAGEMENT

The module explores the ways in which organizations acquire, implement, and manage modern Information Systems. Important topical applications of Information Systems are explained, including Enterprise Resource Planning, E-business, Mobile Commerce, Change Management, Information Systems Development and Sustainable Technologies. The impacts of these technologies on the ways that businesses operate and interact with one another and with their customers are analysed. The module addresses the changing role of information systems and technology in modern organisations. In particular, it examines the multiple roles and uses of information in organisations. Thus, its emphasis is on the 'I' in IT (the information), not on the 'T' (the technology).

NBS-5003Y

20

MATHEMATICAL STATISTICS

It introduces the essential concepts of mathematical statistics deriving the necessary distribution theory as required. In consequence in addition to ideas of sampling and central limit theorem, it will cover estimation methods and hypothesis-testing. Some Bayesian ideas will be also introduced.

CMP-5034A

20

PRACTICAL LAW FOR MANAGEMENT

This module introduces students to aspects of law which are relevant to their future careers as managers. It is an extremely practical module which is taught using a range of legal cases, practical scenarios, and problem questions. This approach enables students to learn the essentials of business law in a useful and engaging way, and introduces them to some of the key legal documentation they are likely to encounter in a managerial role. Students will learn where to find the law, the practical implications for managers, and when it is essential to seek legal advice.

NBS-5017Y

20

TOPICS IN APPLIED MATHEMATICS

This module is an optional Year long module. It covers two topics, Lagrangian Systems and Special Relativity, one in each semester. Lagrangian Systems involves reformulation of problems in mechanics allowing solution of problems such as the osci llation of a double pendulum. Some discussion of Hamiltonian systems will also be included. Special Relativity is concerned with changes in time and space when an observer is moving at a speed close to the speed of light.

MTHF5200Y

20

TOPICS IN PURE MATHEMATICS

This module provides an introduction to two selected topics within pure mathematics. These are self-contained topics which have not been seen before. The topics on offer for 2017-18 are the following. Topology: This is an introduction to point-set topology, which studies spaces up to continuous deformations and thereby generalises analysis, using only basic set theory. We will begin by defining a topological space, and will then investigate notions like open and closed sets, limit points and closure, bases of a topology, continuous maps, homeomorphisms, and subspace and product topologies. Computability: This is an introduction to the theoretical foundation of computability theory. The main question we will focus on is "which functions can in principle (i.e., given unlimited resources of space and time) be computed?". The main object of study will be certain devices known as unlimited register machines (URM's). We will adopt the point of view that a function is computable if and only if i is computable by a URM. We will identify large families of computable functions and will prove that certain naturally occurring functions are not computable.

MTHF5100Y

20

Students will select 80 credits from the following modules:

Name Code Credits

ADVANCED MATHEMATICAL TECHNIQUES

We provide techniques for a wide range of applications, while stressing the importance of rigor in developing such techniques. The calculus of Variations includes techniques for maximising integrals subject to constraints. A typical problem is the curve described by a heavy chain hanging under the effect of gravity. We develop techniques for algebraic and differential equations. This includes asymptotic analysis. This provides approximate solutions when exact solutions can not be found an6d when numerical solutions are difficult. Integral transforms are useful for solving problems including integro-differential equations. This unit will include illustration of concepts using numerical investigation with MAPLE.

MTHD6032B

20

ADVANCED STATISTICS

This module covers two topics in statistical theory: Linear and Generalised Linear models and also includes Stochastic processes. The first two topics consider both the theory and practice of statistical model fitting and students will be expected to analyse real data using R. Stochastic processes including the random walk, Markov chains, Poisson processes, and birth and death processes.

CMP-6004A

20

CRYPTOGRAPHY

Cryptography is the science of coding and decoding messages to keep them secure, and has been used throughout history. While previously only a few people in authority used cryptography, the internet and e-commerce mean that we now all have transactions that we want to keep secret. The speed of modern computers means messages encrypted using techniques from just a few decades ago can now be broken in seconds; thus the methods of encryption have also become more sophisticated. In this module, we will explore the mathematics behind some of these methods, notably RSA and Elliptic Curve Cryptogrphy.

MTHD6025A

20

DYNAMICAL METEOROLOGY

Dynamical meteorology is a core subject on which weather forecasting and the study of climate and climate change are based. This module applies fluid dynamics to the study of the circulation of the Earth's atmosphere. The fluid dynamical equations and some basic thermodynamics for the atmosphere are introduced. These are then applied to topics such as geostrophic flow, thermal wind and the jet streams, boundary layers, gravity waves, the Hadley circulation, vorticity and potential vorticity, Rossby waves, and equatorial waves. Emphasis will be placed on fluid dynamical concepts as well as on finding analytical solutions to the equations of motion.

MTHD6018B

20

FERMAT'S LAST THEOREM

This module looks at the Mathematics developed in attempts to prove Fermat's Last Theorem: that there are no natural number solutions to xn+yn=zn when n>2, This begins with Fermat's method of infinite descent, together with the property that any integer can be factorized uniquely into primes. However, to go beyond very small values of n, we must look at extensions of the integers, where unique factorization fails. Everntually, using tools from Abstract Algebra (rings and ideals) we will see Kummer's proof for so-calle regular primes n.

MTHD6024B

20

FLUID DYNAMICS

Fluid dynamics has wide ranging applications across nature, engineering, and biology. From understanding the behaviour of ocean waves and weather, designing efficient aircraft and ships, to capturing blood flow, the ability the understand and predict how fluids (liquids and gasses) behave is of fundamental importance. This Module considers mathematical models of fluids, particularly including viscosity (or stickiness) of a fluid. Illustrated by practical examples throughout, we develop the governing differential Navier-Stokes equations, and then consider their solution either finding exact solutions, or using analytical techniques to obtain solutions in certain limits (for example low viscosity or high viscosity).

MTHD6020A

20

MATHEMATICAL BIOLOGY

Mathematics finds wide-ranging applications in biological systems: including population dynamics, epidemics and the spread of diseases, enzyme kinetics, some diffusion models in biology including Turing instabilities and pattern formation, and various aspects of physiological fluid dynamics.

MTHD6021A

20

MATHEMATICAL LOGIC

The subject analyses symbolically the way in which we reason formally, particularly about mathematical structures. The ideas have applications to other parts of Mathematics, as well as being important in theoretical computer science and philosophy. We give a thorough treatment of predicate and propositional logic and an introduction to model theory.

MTHD6015A

20

MATHEMATICS PROJECT

MTHA6005Y

20

THEORY OF FINITE GROUPS

Group theory is the mathematical study of symmetry. The modern treatment of this is group actions and these are a central theme of this course. We will begin with permutation groups, group actions and the orbit-stabilizer theorem with many applications. This is followed by a discussion of the Sylow theorems, the class equations and an elementary theory of p-groups. Further topics include the theorem of Jordan and Hoelder, solvable groups and simple. Simplicity of finite and infinite alternating groups.

MTHD6014A

20

Students will select 20 credits from the following modules:

Name Code Credits

BUSINESS AND COMPANY LAW

This module is highly vocational and primarily designed for students taking accounting and related degrees, who wish to satisfy the curriculum requirements of the accounting profession, as having a foundation in aspects of English business and company law. The module covers in particular detail the Law of Contract and Company Law but also a wide variety of other subject areas, including the English Legal System, Partnership and Agency Law, Law of Torts, Criminal Law, Data Protection Law and Employment Law.

NBS-5004Y

20

BUSINESS FINANCE

This module sets out the basic principles of financial management and applies them to the main decisions faced by the financial manager. For example, it explains why the firm's owners would like the manager to increase firm value and shows how managers choose between investments that may pay off at different points of time or have different degrees of risk. Moreover, it discusses how companies raise the necessary funds to pay for these investments and why they might prefer a particular source of finance. Overall, this module presents the tools of modern financial management in a consistent conceptual framework.

NBS-5008Y

20

DIGITAL MARKETING AND THE SERVICE ECONOMY

This module advances the students' understanding of strategic marketing by focusing on digital and service marketing. While strategy is about planning, developing and continuously creating the firm's future to ensure sustainable competitive advantage, today's firm must learn to adapt its marketing activities and ground its understanding in the reality of its chosen markets. This module draws on digital marketing and service theories by highlighting different models, case studies and industry experience. It proposes to develop strategic thinking for marketers in a highly challenging technological world, and to help lead firms in facing future challenges in a more connected economy.

NBS-5013Y

20

FINANCIAL ACCOUNTING

This module is about the theory and practice of financial accounting and reporting. This includes an examination of current and legal professional requirements as they relate to limited liability companies in the UK. Large UK companies report using International Financial Reporting Standards and therefore international reporting issues are considered.

NBS-5002Y

20

HUMAN RESOURCE MANAGEMENT

This module builds on what students have learnt about managing people in organisational behaviour (NBS-4005Y). It introduces the topic of HRM and raises awareness of how the HR function can contribute to the business in providing competitive advantage. It will cover the knowledge, understanding and skills needed to be an effective people manager but will also help prepare students for a career in HR. The module provides a good grounding in the key areas of managing human resources including employee resourcing; managing the employment relationship and managing employee performance.

NBS-5011Y

20

INFORMATION SYSTEMS FOR MANAGEMENT

The module explores the ways in which organizations acquire, implement, and manage modern Information Systems. Important topical applications of Information Systems are explained, including Enterprise Resource Planning, E-business, Mobile Commerce, Change Management, Information Systems Development and Sustainable Technologies. The impacts of these technologies on the ways that businesses operate and interact with one another and with their customers are analysed. The module addresses the changing role of information systems and technology in modern organisations. In particular, it examines the multiple roles and uses of information in organisations. Thus, its emphasis is on the 'I' in IT (the information), not on the 'T' (the technology).

NBS-5003Y

20

MANAGEMENT ACCOUNTING

The module aims to develop students' understanding of the theory and practice of management accounting. It develops underpinning competencies in management accounting and builds on topics introduced in the first year. It extends comprehension of the role and system of management accounting for performance measurement, planning, decision making and control across a range of organisations. Additionally, it introduces recent developments in management accounting practice, particularly those which underpin its growing strategic role.

NBS-5007Y

20

OPERATIONS STRATEGY AND MANAGEMENT

This module is about operations management, which is a functional field of management encompassing the design and improvement of the processes and systems employed in the creation and delivery of an organisation's products and services. Essentially, operations management is concerned with explaining how manufacturing and service organizations work. Managing operations well requires both strategic and tactical skills and is critical to every type of organisation, for it is only through effective and efficient utilization of resources that an organization can be successful in the long run.

NBS-5010Y

20

PRACTICAL LAW FOR MANAGEMENT

This module introduces students to aspects of law which are relevant to their future careers as managers. It is an extremely practical module which is taught using a range of legal cases, practical scenarios, and problem questions. This approach enables students to learn the essentials of business law in a useful and engaging way, and introduces them to some of the key legal documentation they are likely to encounter in a managerial role. Students will learn where to find the law, the practical implications for managers, and when it is essential to seek legal advice.

NBS-5017Y

20

Students will select 20 credits from the following modules:

Name Code Credits

ADVANCED MATHEMATICAL TECHNIQUES

We provide techniques for a wide range of applications, while stressing the importance of rigor in developing such techniques. The calculus of Variations includes techniques for maximising integrals subject to constraints. A typical problem is the curve described by a heavy chain hanging under the effect of gravity. We develop techniques for algebraic and differential equations. This includes asymptotic analysis. This provides approximate solutions when exact solutions can not be found an6d when numerical solutions are difficult. Integral transforms are useful for solving problems including integro-differential equations. This unit will include illustration of concepts using numerical investigation with MAPLE.

MTHD6032B

20

ADVANCED STATISTICS

This module covers two topics in statistical theory: Linear and Generalised Linear models and also includes Stochastic processes. The first two topics consider both the theory and practice of statistical model fitting and students will be expected to analyse real data using R. Stochastic processes including the random walk, Markov chains, Poisson processes, and birth and death processes.

CMP-6004A

20

CONSUMER BEHAVIOUR

This module develops and expands knowledge, understanding, and awareness of consumer behaviour and the multiple influences that shape the role of a consumer in a market society. Drawing on a wide range of multidisciplinary theoretical perspectives from social sciences and beyond, the module explores the complexity of consumer behaviour in individual, collective, social, and organisational settings and it's far reaching implications in society for individuals, markets, businesses, organisations, and the government. The module challenges conventional ideas about consumer, consumption, market structures, and market society and opens up horizons about how the economy and society can respond to such behaviours.

NBS-6008Y

20

CORPORATE SUSTAINABILITY

This module reviews the challenges, solutions and opportunities faced by businesses relating to environmental and energy issues. Students who successfully complete this module will be able to demonstrate an understanding of the ways that businesses interact with the environment. This issue will be examined in the interfaces of regulatory, strategy and economics frameworks. However, basic knowledge of infrastructure systems will be transferred. This will enable interdisciplinary, industry relevant skills to be acquired. Throughout the module the students will engage in activities that will foster peer-learning and problem solving. At the end of this module students will be able to: (1)Evaluate the impact that commercial and industrial businesses have on the environment (2)Critically evaluate the risks that businesses face due to environmental parameters and environmental regulation (3)Demonstrate working knowledge of the main operational principles of energy systems and their sustainability impacts (4)Demonstrate synthetic skills to provide complex solutions including but not limited to regulatory compliance, risk management and lower operational costs (5)Understand the governing parameters of sustainable investments

NBS-6005B

20

CRYPTOGRAPHY

Cryptography is the science of coding and decoding messages to keep them secure, and has been used throughout history. While previously only a few people in authority used cryptography, the internet and e-commerce mean that we now all have transactions that we want to keep secret. The speed of modern computers means messages encrypted using techniques from just a few decades ago can now be broken in seconds; thus the methods of encryption have also become more sophisticated. In this module, we will explore the mathematics behind some of these methods, notably RSA and Elliptic Curve Cryptogrphy.

MTHD6025A

20

DYNAMICAL METEOROLOGY

Dynamical meteorology is a core subject on which weather forecasting and the study of climate and climate change are based. This module applies fluid dynamics to the study of the circulation of the Earth's atmosphere. The fluid dynamical equations and some basic thermodynamics for the atmosphere are introduced. These are then applied to topics such as geostrophic flow, thermal wind and the jet streams, boundary layers, gravity waves, the Hadley circulation, vorticity and potential vorticity, Rossby waves, and equatorial waves. Emphasis will be placed on fluid dynamical concepts as well as on finding analytical solutions to the equations of motion.

MTHD6018B

20

ENTREPRENEURSHIP AND SMALL BUSINESS MANAGEMENT

This module aims to provide students with knowledge of the significance of entrepreneurship and the small business sector within the economy, and research-led understanding of the factors that affect the small business birth, growth, success and failure

NBS-6010Y

20

FERMAT'S LAST THEOREM

This module looks at the Mathematics developed in attempts to prove Fermat's Last Theorem: that there are no natural number solutions to xn+yn=zn when n>2, This begins with Fermat's method of infinite descent, together with the property that any integer can be factorized uniquely into primes. However, to go beyond very small values of n, we must look at extensions of the integers, where unique factorization fails. Everntually, using tools from Abstract Algebra (rings and ideals) we will see Kummer's proof for so-calle regular primes n.

MTHD6024B

20

FLUID DYNAMICS

Fluid dynamics has wide ranging applications across nature, engineering, and biology. From understanding the behaviour of ocean waves and weather, designing efficient aircraft and ships, to capturing blood flow, the ability the understand and predict how fluids (liquids and gasses) behave is of fundamental importance. This Module considers mathematical models of fluids, particularly including viscosity (or stickiness) of a fluid. Illustrated by practical examples throughout, we develop the governing differential Navier-Stokes equations, and then consider their solution either finding exact solutions, or using analytical techniques to obtain solutions in certain limits (for example low viscosity or high viscosity).

MTHD6020A

20

HISTORY OF MATHEMATICS

We trace the development of mathematics from prehistory to the high cultures of old Egypt, Mesopotamia and the Valley of Ind, through Islamic mathematics onto the mathematical modernity through a selection of results from the present time. We present the rise of calculus from the first worsk of the Indian and Greek mathematicians differentiation and integration through at the time of Newton and Leibniz. We discuss mathematical logic, the ideas of propositions, the axiomatisation of mathematics, and the idea of quantifiers. Our style is to explore mathematical practice and conceptual developments in different historical and geographic contexts.

MTHA6002B

20

MARKETING: SOCIAL RESPONSIBILITY AND THE LAW

This multi-disciplinary module examines socially irresponsible marketing practices by governments and businesses, taking national and international perspectives, and looks at the effect on the public, consumers and other businesses. Students successfully completing this module will demonstrate an understanding and awareness of the impact of marketing decisions on consumers, businesses and the wider society. This unit will provide them with greater knowledge and awareness of the legal and regulatory frameworks which affect marketing practice, and equip them with the skills to formulate their own marketing decisions and to know when expert legal advice is required.

NBS-6011Y

20

MATHEMATICAL BIOLOGY

Mathematics finds wide-ranging applications in biological systems: including population dynamics, epidemics and the spread of diseases, enzyme kinetics, some diffusion models in biology including Turing instabilities and pattern formation, and various aspects of physiological fluid dynamics.

MTHD6021A

20

MATHEMATICAL LOGIC

The subject analyses symbolically the way in which we reason formally, particularly about mathematical structures. The ideas have applications to other parts of Mathematics, as well as being important in theoretical computer science and philosophy. We give a thorough treatment of predicate and propositional logic and an introduction to model theory.

MTHD6015A

20

SHOPPER MARKETING

Shopper marketing is concerned with the factors that influence buyer behaviour where it matters most - at the point of purchase, in-store or on-line. These factors are referred to as situational factors and relate to the individual shopper, the environment (store or website), the buying goals (self or other-orientated), and the shopping mission (routine repeat purchase, or special occasion). This module explores the way in which retailers, manufacturers and distributors work together to influence, anticipate and meet the needs and wants of distinct shopper segments through the manipulation of the retail environment, the marketing mix and the supply chain. As such, it will appeal to business management students with an interest in marketing, retailing, operations management and consumer behaviour but also students from other disciplines with an interest in sustainable consumption and the design of interventions (policies and practices) that influence buyer behaviour.

NBS-6027Y

20

STRATEGIC BRAND MANAGEMENT

The module focuses on brand management. It takes a very pragmatic approach, showing through numerous case studies how organisations launch brands, establish and maintain brand equity, and how they manage brands over time and geographic boundaries. To develop a knowledge and understanding of brand management, students study the factors and strategies that contribute to building brand equity. The lectures will be supported by a series of seminar sessions which allow students to experience the practical application of the module syllabus and to test their understanding of the relevant theories. This module is particularly useful for students aiming at careers in marketing, advertising or market research.

NBS-6023Y

20

THEORY OF FINITE GROUPS

Group theory is the mathematical study of symmetry. The modern treatment of this is group actions and these are a central theme of this course. We will begin with permutation groups, group actions and the orbit-stabilizer theorem with many applications. This is followed by a discussion of the Sylow theorems, the class equations and an elementary theory of p-groups. Further topics include the theorem of Jordan and Hoelder, solvable groups and simple. Simplicity of finite and infinite alternating groups.

MTHD6014A

20

Disclaimer

Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. Where this is the case, the University will endeavour to inform students.

Entry Requirements

  • A Level AAB including A in Mathematics or ABB including A in Mathematics and B in Further Mathematics
  • International Baccalaureate 33 points including HL Mathematics at 6 and one other HL subject at 6
  • Scottish Advanced Highers AAB including A in Mathematics
  • Irish Leaving Certificate AAAABB including A in Mathematics
  • Access Course Pass the Access to HE Diploma with Distinction in 36 credits at Level 3 and Merit in 9 credits at Level 3, including 12 Level 3 credits in Mathematics
  • BTEC Only accepted alongside A-level Mathematics
  • European Baccalaureate 80% overall including 85% in Mathematics

Entry Requirement

You are required to have Mathematics and English Language at a minimum of Grade C or Grade 4 or above at GCSE.

Critical Thinking and General Studies are not accepted.

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including writing, speaking, listening and reading):

  • IELTS: 6.5 overall (minimum 6.0 in any component)

We also accept a number of other English language tests. Please click here to see our full list.

INTO University of East Anglia 

If you do not meet the academic and or English requirements for direct entry our partner, INTO University of East Anglia offers guaranteed progression on to this undergraduate degree upon successful completion of a preparation programme. Depending on your interests, and your qualifications you can take a variety of routes to this degree:

International Foundation in General Science FS1

International Foundation in Physical Sciences and Mathematics FS3

International Foundation in Mathematics with Actuarial Science FMA 

 

Interviews

The majority of candidates will not be called for an interview and a decision will be made via UCAS Track. However, for some students an interview will be requested. You may be called for an interview to help the School of Study, and you, understand if the course is the right choice for you.  The interview will cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.  Where an interview is required the Admissions Service will contact you directly to arrange a convenient time.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year.  We believe that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and to contact admissions@uea.ac.uk directly to discuss this further.

Intakes

The School's annual intake is in September of each year.

  • A Level AAB to include an A in Mathematics. Science A-levels must include a pass in the practical element.
  • International Baccalaureate 33 points to include HL 6 in Mathematics and HL 6 in one other subject. If no GCSE equivalent is held, offer will include Mathematics and English requirements.
  • Scottish Highers Only accepted in combination with Scottish Advanced Highers.
  • Scottish Advanced Highers BBC to include a B in Mathematics. A combination of Advanced Highers and Highers may be acceptable.
  • Irish Leaving Certificate AAAABB or 4 subjects at H1 and 2 subjects at H2, to include grade A or H1 in Higher Level Mathematics.
  • Access Course Pass the Access to HE Diploma with Distinction in 36 credits at Level 3, and Merit in 9 credits at Level 3. to include 12 Level 3 credits in Mathematics. Science pathway required.
  • BTEC DDM in relevant subject plus A-level Mathematics at Grade A. Excluding Public Services. BTEC and A-level combinations are considered - please contact us.
  • European Baccalaureate 80% overall to include at least 85% in Mathematics.

Entry Requirement

GCSE Requirements:  GCSE English Language grade 4 and GCSE Mathematics grade 4 or GCSE English Language grade C and GCSE Mathematics grade C.

General Studies and Critical Thinking are not accepted.  

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

 

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including speaking, listening, reading and writing) at the following level:

  • IELTS: 6.5 overall (minimum 6.0 in any component)

We will also accept a number of other English language qualifications. Review our English Language Equivalences here.

INTO University of East Anglia 

If you do not meet the academic and/or English language requirements for this course, our partner INTO UEA offers guaranteed progression on to this undergraduate degree upon successful completion of a foundation programme. Depending on your interests and your qualifications you can take a variety of routes to this degree:

INTO UEA also offer a variety of English language programmes which are designed to help you develop the English skills necessary for successful undergraduate study:

 

Interviews

The majority of candidates will not be called for an interview. However, for some students an interview will be requested. These are normally quite informal and generally cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year, believing that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and may wish to contact the appropriate Admissions Office directly to discuss this further.

Intakes

The School's annual intake is in September of each year.

Alternative Qualifications

We encourage you to apply if you have alternative qualifications equivalent to our stated entry requirement. Please contact us for further information.

Fees and Funding

Undergraduate University Fees and Financial Support: Home and EU Students

Tuition Fees

Please see our webpage for further information on the current amount of tuition fees payable for Home and EU students and for details of the support available.

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. 

Home/EU - The University of East Anglia offers a range of Bursaries and Scholarships.  To check if you are eligible please visit 

______________________________________________________________________

Undergraduate University Fees and Financial Support: International Students

Tuition Fees

Please see our webpage for further information on the current amount of tuition fees payable for International Students.

Scholarships

We offer a range of Scholarships for International Students – please see our website for further information.

 

How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The system allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it must be sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The UCAS code name and number for the University of East Anglia is EANGL E14.

Further Information

If you would like to discuss your individual circumstances with the Admissions Office prior to applying please do contact us:

Undergraduate Admissions Office (Mathematics)
Tel: +44 (0)1603 591515
Email: admissions@uea.ac.uk

Please click here to register your details online via our Online Enquiry Form.

International candidates are also actively encouraged to access the University's International section of our website.

    Next Steps

    We can’t wait to hear from you. Just pop any questions about this course into the form below and our enquiries team will answer as soon as they can.

    Admissions enquiries:
    admissions@uea.ac.uk or
    telephone +44 (0)1603 591515