BSc Geography (with Education)


Attendance
Full Time
Award
Degree of Bachelor of Science



UCAS Course Code
L7X1
Call us now
0300 300 7994
UEA Clearing 0300 300 7994
Explore the physical impact of a changing world – from rising sea levels and environmental hazards to climate change, biodiversity and the Earth’s systems.

You’ll gain a solid understanding of the challenges facing our dynamic planet, and develop valuable, practical experience through various field courses, while pursuing your interest in education. Alongside this you’ll learn specialist theory in areas such as hydrology, paleoclimatology, population ecology and environmental economics.

This course will not only give you the opportunity to explore these challenges, but also to pursue your interest in education by taking modules from the School of Education. It is an ideal course to prepare you for the teaching profession, or careers linked to science communications.

Overview

Explore the interactions between the natural environment and human society. Our BSc Geography with Education degree allows you to study physical and human geography while preparing for a rewarding career in education.

Situated in the School of Environmental Sciences, you will benefit from a range of fascinating optional modules allowing you to tailor your degree to your own interests and career aspirations. You’ll also study modules from the School of Education to further develop your understanding of teaching.

During your first year, you will learn about key geographical concepts, discover the latest about global environmental challenges, study how our planet works, and get outside to develop your skills during practicals, on field trips as well as a residential field course. You will also choose between a module on the interplay between sustainable development and biodiversity, and one on understanding our atmospheres and oceans.

As you progress through the course, you will continue developing your skills as a geographer across a range of specialisms, including geographical information systems (GIS). You will be able to shape your degree around your interests by choosing optional modules covering topics such as geomorphology, soils, biogeography, climate change and natural hazards.

In your final year independent research projects – one in education and one in geography – you will put all your skills and learning into practice.

You will have a guaranteed placement in a local secondary school and take modules in the School of Education. On this degree you will gain the experience you need for further study at Master’s level, a PGCE qualification, or teacher training through routes such as School-centred initial teacher training (SCITT).

Our course is renowned for its quality and teaching excellence. We scored 97% for overall satisfaction in Physical Geography and Environmental Science in the 2017 National Student Survey.

Course Structure

In this three-year degree programme you’ll start by mastering a broad range of topics in geography. You’ll also build a foundation of essential education. Next, you’ll start to shape your degree by choosing optional modules from both Schools. The course culminates in two independent research projects and there are opportunities to participate in field courses in all three years of your degree.

Year 1

Your first year is designed to give you a broad understanding of the challenges facing contemporary geographers. This is underpinned by an introduction to fundamental research techniques and the methods physical geographers use to analyse and understand the world. You’ll also be able to get involved in extracurricular education and science communication activity.

Year 2

In your second year, you’ll gain valuable technical expertise through the GIS Skills for Project Work module, and choose from a range of options including topics such as geomorphology, population ecology and management, climate change science and policy, and global tectonics.

Alongside this, you’ll complete a compulsory education work placement module in a local school.

Year 3

In your third year you will carry out two independent research projects – one in geography and one in education. This is your opportunity to put everything you’ve learnt throughout your degree into practice, as well as a chance to specialise in topics that really fascinate you with the supervision of a world-class expert.

There are also further optional modules to study, including topics such as geophysical hazards, biodiversity, conservation and human society, the carbon cycle and climate change, catchment water resources, and natural resources and environmental economics. Your options could even include a field course to Greece or Spain.

Teaching and Learning

Teaching

You will be taught by leading geographers and environmental scientists, and award-winning teachers. You will have around 15-18 hours contact time per week, in a combination of lectures, practicals, seminars, workshops, , field trips and residential field courses. Student-led learning comes in various forms too, from peer-to-peer learning through oral presentations, and presentations in class. You’ll work in small groups to solve problems, conduct experiments, debate important topics, develop ideas and create new solutions to real-world problems.  Classroom experience will be gained through work placement experiences over the three years.

Field learning is integral to this degree – in fact, the whole world is your laboratory. You will encounter a wide variety of geological settings, ecological habitats and human environments, and learn practical techniques using specialist equipment through the wide range of field courses available.

Independent study

You’ll spend time carrying out independent study, researching, writing essays or carrying out practical work or projects.

This course will give you an excellent balance of independent thinking and study skills, helping you grow into a self-motivated learner, an expert researcher and analytical thinker. Throughout your degree you will be given guidance on your work and constructive feedback to help you improve.

Academic support

To make sure you get the most from your studies and help you reach your full potential our Learning Enhancement team, based in the Student Support Service are on hand to help in the following areas:

Study skills (including reading, note-taking and presentation skills)

Writing skills (including punctuation and grammatical accuracy)

Academic writing (including how to reference).

Revision, assessment and examination skills (including time management)

If you have additional needs due to disabilities such as sensory impairment or learning difficulties such as dyslexia please talk to our Student Support Services about how we can help.

Assessment

We will use varied assessment methods across the different modules, contributing in various proportions towards your overall module mark. The balance of assessment by coursework and exam depends on the modules you choose.

Coursework assessment methods include essays, projects, class tests, problem sheets, laboratory reports, field exercises, seminars, presentations, posters and blogs.

For each module you will have the chance to test your skills with one or two pieces of practice or ‘formative’ assignments. You will get feedback on your practice assignments from your tutors, helping you improve your work before your final ‘summative’ assessment.

After the course

Employability is embedded in our modules, helping you develop your career and skills throughout your course. We work closely with UEA’s Careers Service to help you meet employers (including alumni), explore career options, speak to industry mentors, and apply for internships, volunteering, and graduate jobs.

Geography graduates go on to a wide range of careers and have a high rate of employment. You could work for national and international agencies, private sector or governments, in environmental and resource management, climate change, economic and social development, planning, or policy making.

In addition to the many geography careers on offer, this degree will prepare you for a PGCE qualification or teacher training through routes such as School-centred initial teacher training (SCITT).

Career destinations

Examples of careers that you could enter include;

  • Sustainability officer
  • Environmental consultant
  • Waste and recycling manager
  • GIS technician
  • Cartographer
  • Transport planner

Course related costs

Field courses are available in every year of your course. We fully subsidise the cost of one residential field course – the others are 50% subsidised and cost £250-£400 depending on destination and duration. These costs cover accommodation, meals and transport.

You can find details for individual field courses in the module information.

In addition to the standard fees, you’ll be expected to cover the costs of travel to and from your work placement as part of the ‘Education in Action’ module. You will also need to pay for and complete a DBS check prior to commencing the course.

Please see Additional Course Fees for details of course-related costs.

Course Modules 2018/9

Students must study the following modules for 80 credits:

Name Code Credits

GEOGRAPHICAL PERSPECTIVES

This module provides an introduction and orientation regarding geographical thought, methods and concepts. It begins with an overview of the history and development of the discipline. This leads on to discussion of core concepts such as space, place, scale, systems, nature, landscape and risk. In addition, the methods and different types of evidence used by geographers are introduced. You will be able to demonstrate an appreciation of the diversity of approaches to the generation of geographical knowledge and understanding and the capacity to communicate geographical ideas, principles, and theories effectively and fluently by written, oral and visual means.

ENV-4010Y

20

HUMAN GEOGRAPHIES OF A CHANGING WORLD

This module is a core element of the BA Geography programme and offers you a year-long introduction to contemporary issues in Human Geography. Topics you will cover include: urbanisation, globalisation, alternative economic geographies, inequalities and environmental justice. You can also study areas such as environmental governance, geo-politics, population change, migration and health; social and cultural geographies, consumption, identity and exclusion. The module is taught using lectures, seminars and participative workshops.

ENV-4012Y

20

RESEARCH AND FIELD SKILLS

You will develop a range of transferable skills, tools and resources that are widely used in research across the Environmental Sciences and Geography. It aims to provide a broad understanding of the research process through activities that involve formulating research questions, collecting data using appropriate sources and techniques, collating and evaluating information and presenting results. A week-long residential field course, held at Easter and based at Slapton Ley, Devon, applies field, lab and other skills to a variety of environmental science and geography topics. Depending on the size of the cohort, students on selected degree programmes may be offered the option of an alternative field course arrangement.

ENV-4004Y

20

UNDERSTANDING THE DYNAMIC PLANET

Understanding of natural systems is underpinned by physical laws and processes. You will explore the energy, mechanics, and physical properties of Earth materials and their relevance to environmental science using examples from across the Earth's differing systems. The formation, subsequent evolution and current state of our planet are considered through its structure and behaviour - from the planetary interior to the dynamic surface and into the atmosphere. You will study Plate Tectonics to explain Earth's physiographic features - such as mountain belts and volcanoes - and how the processes of erosion and deposition modify them. The distribution of land masses is tied to global patterns of rock, ice and soil distribution and to atmospheric and ocean circulation. You will also explore geological time - the 4.6 billion year record of changing conditions on the planet - and how geological maps can be used to understand Earth history. This course provides you with an introduction to geological materials - rocks, minerals and sediments - and to geological resources and natural hazards.

ENV-4005A

20

Students will select 0 - 20 credits from the following modules:

Students will be assigned to the relevant mathematics modules based on their previous qualifications.

Name Code Credits

ADVANCED QUANTITATIVE SKILLS

Mathematical and statistical skills are key to all brands of environmental sciences and geography. This module will strengthen your mathematical and statistical skills. It will consolidate your mathematics knowledge from GCSE level and will introduce you to differentiation and integration. You'll learn to recognise the purpose of simple statistical methods, to choose the appropriate methods to test hypotheses and to summarise data using tables and graphs. You'll use a computer package for statistical operations. You'll apply these quantitative skills to contemporary environmental and geographical problems, inspired by research in the School of Environmental Sciences. You'll be assessed through an online course test and an exam. This module will widen the range of science modules that you can take during your studies in geography and environmental sciences. Upon successful completion of the module, you'll have acquired skill in applying a range of mathematical and statistical methods to problems in environmental sciences and geography. Recommended if you have: A2 maths (D or E), AS Maths, A2 Physics (C or better), IB SL Maths (2, 3), IB SL Maths Studies, GCSE Maths (A, A*), CHE-0006.

ENV-4014Y

20

MATHEMATICS FOR SCIENTISTS A

You will cover differentiation, integration, vectors, partial differentiation, ordinary differential equations, further integrals, power series expansions, complex numbers and statistical methods as part of this module. In addition to the theoretical background there is an emphasis on applied examples. Previous knowledge of calculus is assumed. This module is the first in a series of three maths modules for those across the Faculty of Science that provide a solid undergraduate mathematical training. The follow-on modules are Mathematics for Scientists B and C.

ENV-4015Y

20

QUANTITATIVE METHODS

You will explore how quantitative skills can be applied to solve a range of environmental problems. Designed primarily for students who have a GCSE in maths at grade B or C, but no AS/ A2 qualification (or equivalent), the module will include a review of some fundamental GCSE-level maths but will focus on the practical use of maths through physical equations and mathematical models. You will also learn about summarising data using both numerical summaries and graphs, testing hypotheses and carrying out these analyses on computers.

ENV-4013Y

20

Students will select 20 credits from the following modules:

Students cannot select ENV-4007B and ENV-4008B.

Name Code Credits

ATMOSPHERE and OCEANS I

The habitability of planet Earth depends on physical and chemical systems that control everything from the weather and climate to the growth of all living organisms. This module introduces you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret them. It leads naturally to second and third year study of these systems in more detail, but even if you choose to study other aspects of environmental sciences, a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The module is made up of two distinct components. One focuses on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) The other focuses on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). Interrelationships between these components are explored throughout. Teaching of this module is through a mix of lectures, laboratory practical classes, workshops and a half-day field trip. This module provides a Basic Chemistry introduction for those students who have little or no background in chemistry prior to joining UEA.

ENV-4007B

20

ATMOSPHERE and OCEANS II

The habitability of planet Earth depends on physical and chemical systems that control everything from the weather and climate to the growth of all living organisms. This module introduces you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret them. It leads naturally to second and third year study of these systems in more detail, but even if you choose to study other aspects of environmental sciences, a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The module is made up of two distinct components. One focuses on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) The other focuses on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). Interrelationships between these components are explored throughout. Teaching of this module is through a mix of lectures, laboratory practical classes, workshops and a half-day field trip. This module is for students with previous experience of chemistry.

ENV-4008B

20

SUSTAINABILITY, SOCIETY AND BIODIVERSITY

Striking a balance between societal development, economic growth and environmental conservation has proven challenging and contentious at many scales. The concept of `sustainability' was coined to denote processes aiming to achieve this balance. This module introduces sustainable development, and examines why sustainability is so difficult to achieve, bringing together social and ecological dimensions. It also explores sustainability from an ecological perspective, introducing a range of concepts relevant to the structure and functioning of the biosphere and topics ranging from landscape and population ecology, to behavioural ecology, molecular ecology, and biodiversity conservation from single ornisms to the entire biomes. This module is assessed by coursework and an examination.

ENV-4006B

20

Students must study the following modules for 40 credits:

Name Code Credits

EDUCATION IN ACTION

EDU-5002A

20

GIS SKILLS FOR PROJECT WORK

This module builds upon the introduction to GIS provided in the first year Research and Field Skills module, focusing on how you obtain your own data, integrate it together and then undertake analysis and presentation tasks. ESRI ArcGIS will be the main software used, but there will also be an introduction to scripting tools (Python), and open source software (QGIS) and online GIS (ArcGIS Online).

ENV-5028B

20

Students will select 20 credits from the following modules:

Name Code Credits

AQUATIC ECOLOGY

Explore how chemical, physical and biological influences shape the biological communities of rivers, lakes and estuaries in temperate and tropical regions. Three field visits and laboratory work, usually using microscopes and sometimes analysing water quality, provide an important practical component to this module. A good complement to other ecology modules, final-year Catchment Water Resources and modules in development studies or geography, it can also be taken alongside Aquatic Biogeochemistry or other geochemical and hydrology modules. Students selecting this module must have a background in basic statistical analysis of data.

ENV-5001A

20

COMMUNITY, ECOSYSTEM AND MACRO-ECOLOGY

This module introduces you to major concepts and definitions in community ecology, macro-ecology and biogeography. You will use these to explore how communities are structured in relation to local-scale to regional-scale processes, how they function and respond to perturbations at different scales, and result in emergent macro- to global-scale patterns of biodiversity distribution. Throughout the module, there is an emphasis on the relevance of theory and fundamental science to understanding the current environmental and biodiversity crisis. Anthropogenic impacts on natural communities through land-use, species exploitation, non-native species, and climate change, are a recurrent theme underpinning the examples you will draw upon.

BIO-5014B

20

GEOMORPHOLOGY

Geomorphology is the scientific study of landforms and the processes that shape them, it underpins numerous subjects including: sedimentology, palaeoclimatology, biodiversity, ecosystem services, natural hazards and natural resources. In this module you will be introduced to different landforms and gain an understanding of the earth surface processes that create these landforms. Our approach will be both descriptive and quantitative, based on understanding erosional and depositional concepts, weathering and sediment transport and the evolution of landscapes. Drawing from our own research, the emphasis will be on local East Anglian field sites as case studies (with half and full day field trips) with key international examples, to illustrate and improve your understanding of glacial geomorphology, coastal geomorphology, ecogeomorphology and mountain/river/slope geomorphology with some arid geomorphology. You will learn about and apply the methods and different types of data and evidence used by geomorphologists (e.g., maps, imagery and field observations/measurements) to understand landform creation and evolution, gaining numerous transferrable skills.

ENV-5034A

20

METEOROLOGY I

The weather affects everyone and influences decisions that are made on a daily basis around the world. From whether to hang your washing out on a sunny afternoon, to which route a commercial aircraft takes as it travels across the ocean, weather plays a vital role. With that in mind, what actually causes the weather we experience? In this module you'll learn the fundamentals of the science of meteorology. You'll concentrate on the physical process that allow moisture and radiation to transfer through the atmosphere and how they ultimately influence our weather. The module contains both descriptive and mathematical treatments of radiation balance, thermodynamics, dynamics, boundary layers, weather systems and the water cycle. The module is assessed through a combination of one piece of coursework and an exam, and is designed in a way that allows those with either mathematical or descriptive abilities to do well, although a reasonable mathematical competence is essential, including basic understanding of differentiation and integration.

ENV-5008A

20

Students will select 20 - 40 credits from the following modules:

Students will select 20-40 credits, from the following modules, which have been chosen to provide appropriate skills for a related independent project. Students may not take two modules in the same timetable slot in the same semester (the modules are also listed in other Options Ranges alongside others in the same slot). Also note that students must submit a request to the School for a place on field courses.

Name Code Credits

AQUATIC ECOLOGY

Explore how chemical, physical and biological influences shape the biological communities of rivers, lakes and estuaries in temperate and tropical regions. Three field visits and laboratory work, usually using microscopes and sometimes analysing water quality, provide an important practical component to this module. A good complement to other ecology modules, final-year Catchment Water Resources and modules in development studies or geography, it can also be taken alongside Aquatic Biogeochemistry or other geochemical and hydrology modules. Students selecting this module must have a background in basic statistical analysis of data.

ENV-5001A

20

FIELD ECOLOGY

This module aims to introduce you to a wide range of habitats and methods for studying the organisms and natural processes occurring in these habitats. The focus is on identification of species and on formulating and testing hypotheses to investigate interactions between species and their habitats or on examining environmental gradients. The module includes a two week residential field trip to Ireland before the start of the first semester in the autumn term. This module would suit you if you are interested in natural history, geography, ecology and designing and testing scientific hypotheses.

BIO-5013A

20

GEOLOGY LAB SKILLS

Good observational and descriptive skills lie at the heart of many areas of Environmental Science. This module is designed to develop those and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects in this area. The module will include: observing, describing and recording the characteristics of geological materials (hand specimen and under microscope); measuring and representing 3d data, and reading geological maps. You'll need to have taken co-requisite or pre-requisite modules of 40 or more credits from the list: ENV-5004B Applied Geophysics, ENV-5034A Geomorphology, ENV-5035B Sedimentology, ENV-5012A Soil Processes and Environmental issues, ENV-5018A Global Tectonics, ENV-5021A Hydrology and Hydrogeology, ENV-5005K Applied Geophysics with field course.

ENV-5029B

20

GEOLOGY SKILLS

This module is designed to develop good observational and descriptive skills and is particularly suitable for students with interests in Geology, Earth and Geophysical Sciences. It will cover generic Geological skills of use for projects. The module will include: observing, describing and recording the characteristics of geological materials (in the field, in hand specimen and under microscope); measuring and representing 3d data, reading geological maps and basic geological mapping. The module includes a week-long residential field work in the Easter vacation which has an added cost implication in the region of GBP300. You'll need to take co-requisite or pre-requisite modules of 40 or more credits from the list: ENV-5004B Applied Geophysics, ENV-5034A Geomorphology, ENV-5035B Sedimentology, ENV-5012A Soil Processes and Environmental issues, ENV-5018A Global Tectonics, ENV-5021A Hydrology and Hydrogeology, ENV-5005K Applied Geophysics with field course.

ENV-5030B

20

MARINE SCIENCES FIELDCOURSE

The first three days of the fieldcourse involve lectures, seminars and practical sessions on physical, chemical and biological oceanographic techniques, as well as analysis of data and planning of field activities. The next five days see you undertake practical activities using oceanographic research ships and laboratory facilities. On the final day, you'll be involved in data interpretation and presentations. The number of days undertaken will also depend on the number of students undertaking the fieldcourse, so the above days are flexible. This module runs every 2 years and only goes ahead if there are sufficient students enrolled. PLEASE NOTE THAT YOU CAN ONLY ENROL ONTO THIS MODULE VIA AN APPLICATION FORM FROM THE SCHOOL AND NOT VIA THE STANDARD MODULE ENROLMENT PROCESS. ALSO THE MODULE RUNS IN THE SUMMER PRIOR TO THE START OF THE ACADEMIC YEAR.

ENV-5020K

20

POPULATION ECOLOGY AND MANAGEMENT

We live in a human dominated era recently designated "the Anthropocene". Humans harvest more than half of the primary productivity of the planet, many resources are over-exploited or depleted (e.g. fisheries) never before it was so important to correctly manage natural resources for an exponentially growing human population. It is, thus, fundamental to predict where other species occur and the sizes of their populations (abundance). Population Ecology is an area dedicated to the dynamics of population development. In this module we will look closely at how populations are regulated, from within through density dependent factors and from external density independent factors. We start the module with a global environmental change perspective to the management of populations and the factors that affect the population size. We then extend these ideas to help us understand population properties and processes both intra-specifically and inter-specifically. Finally we examine several management applications where we show that a good understanding of the population modelling is essential to correctly manage natural resources on the planet. Practicals include learning to survey butterflies and birds using citizen science monitoring projects and will be focused on delivering statistical analyses of "Big data" using the programme R. The projects will provide a strong training in both subject specific and transferrable skills.

ENV-5014A

20

SEDIMENTOLOGY

Sediments and sedimentary rocks cover much of the Earth's surface, but how do they get there and what can they tell us? If you are a geologist or environmental scientist with particular interest in physical geography then this is a key issue that you need to think about. Sediments record the Earth's history of environmental change, a record that started 3.8 billion years ago. Sediments contain the fossil record and host many of the world's natural resources including water, hydrocarbons, and minerals. In this module you will discover how sedimentologists decode the wealth of information sediments contain, taught by two practicing sedimentologists who have international research reputations in their respective fields. This module includes the study of modern sediments in a range of environments including rivers, the continental shelf and deep ocean basins. We put particular emphasis on the physical and chemical processes that result in the deposition of different sediment types. We then use this basis to interpret the origin and processes that formed ancient sedimentary rocks. The module emphasises development of practical skills in the laboratory, and also in the field.

ENV-5035B

20

SOCIAL RESEARCH SKILLS FOR GEOGRAPHERS AND ENVIRONMENTAL SCIENTISTS

How do we respond to social and environmental change? Why are some of our beliefs and behaviours so persistent, even when we agree that they should change? How do people inhabit the places where they live and work? This module will provide you with tools to investigate the social, cultural, psychological and political processes that shape us and our world. Human geography and the environmental social sciences employ a range of approaches and methods with which to explore their diverse research questions. This module will introduce you to the practice of social science research, including methods that use quantitative (numerical) and qualitative (non-numerical) data. Through a combination of lectures, workshops, and practical activities, you will learn how to design and carry out your own research. By the end of the module you will know how to formulate an interesting research question; how to choose an appropriate method to investigate it; how to ensure that you collect good quality data; how to analyse and interpret your data; and how to present the results of your research. The module is recommended if you intend to use social research methods in your independent dissertation project. In addition to gaining practical research skills, you will develop your ability to critically evaluate research studies that use social science methods. As well as benefiting your academic studies, these analytical and practical research skills are highly valued in many occupational sectors.

ENV-5031B

20

SOCIAL RESEARCH SKILLS FOR GEOGRAPHERS AND ENVIRONMENTAL SCIENTISTS WITH FIELDCOURSE

How do we respond to social and environmental change? Why are some of our beliefs and behaviours so persistent, even when we agree that they should change? How do people inhabit the places where they live and work? This module will provide you with tools to investigate the social, cultural, psychological and political processes that shape us and our world. Human geography and the environmental social sciences employ a range of approaches and methods with which to explore their diverse research questions. This module will introduce you to the practice of social science research, including methods that use quantitative (numerical) and qualitative (non-numerical) data. Through a combination of lectures, workshops, and practical activities, you will learn how to design and carry out your own research. By the end of the module you will know how to formulate an interesting research question; how to choose an appropriate method to investigate it; how to ensure that you collect good quality data; how to analyse and interpret your data; and how to present the results of your research. In the Easter vacation you'll go to Cumbria for a field-course that will provide you with excellent opportunities for studying a range of geographical and environmental issues such as flooding, low-carbon energy developments, spatial contrasts in economic development, and landscape management. During the field-course you will work in a small group to design a research project, including some practical data collection and analysis. The module is recommended if you intend to use social research methods in your independent dissertation project. In addition to gaining practical research skills, you will develop your ability to critically evaluate research studies that use social science methods. As well as benefiting your academic studies, these analytical and practical research skills are highly valued in many occupational sectors.

ENV-5036K

20

WEATHER APPLICATIONS WITH FIELDCOURSE

Weather is one of the most popular topics of conversation. But how, specifically, does it present risks and opportunities, to people, organisations and to the wider environment? In this module you will develop a clear understanding of these linkages and an evidence base to draw on in future roles in which weather is a factor. You'll learn how to confidently source a diverse range of real-time weather information and you'll practice analysing such data, leading subsequently to successful interpretation and effective communication, both written and in front of the camera. You'll see, first hand, how meteorology depends upon computer systems for the efficient sharing, processing and visualisation of weather information. Being taught by weather practitioners with long experience of providing weather services to users, you will get the inside track on what it's like to work in weather. Weather Forecasting is one central theme and application which will provide a focus for learning. How are forecasts made and delivered, who uses forecasts and what are their distinctive needs? Success in forecasting depends in part on a good physical understanding of atmospheric processes - through practical work, we'll study those processes and use real examples of weather systems and events to reinforce the learning. At the end of the module, through an embedded week-long Easter residential fieldcourse, you'll apply your enhanced process understanding and forecasting knowledge in a hands-on way to design and implement meteorological field experiments, testing hypotheses through the collection and interpretation of field data collected using weather sensors. You'll write up your choice of fieldcourse experiment for assessment, after first receiving informal feedback on a related poster presentation.

ENV-5010K

20

Students will select 20 - 60 credits from the following modules:

Name Code Credits

ATMOSPHERIC CHEMISTRY AND GLOBAL CHANGE

Atmospheric chemistry and global change are in the news. Stratospheric ozone depletion, acid rain, greenhouse gases, and global scale air pollution are among the most significant environmental problems of our age. Chemical composition and transformations underlie these issues, and drive many important atmospheric processes. This module covers the fundamental chemical principles and processes in the atmosphere, from the Earth's surface to the stratosphere, and considers current issues of atmospheric chemical change through a series of lectures, problem-solving classes, seminars, experimental and computing labs, as well as a field trip to UEA's own atmospheric observatory in Weybourne/North Norfolk.

ENV-5015A

20

CLIMATE CHANGE: SCIENCE AND POLICY

You will develop your skills and understanding in the integrated analysis of global climate change, using perspectives from both the natural sciences and the social sciences. You will gain a grounding in the basics of climate change science, impacts, adaptation, mitigation and their influence on and by policy decisions. This module also offers you a historical perspective on how climate policy has developed, culminating in the December 2015 Paris Agreement. Finally, it considers what will be required to meet the goal of the Paris Agreement to limit global warming to well below 2 #C above pre-industrial levels.

ENV-5003A

20

COMMUNITY, ECOSYSTEM AND MACRO-ECOLOGY

This module introduces you to major concepts and definitions in community ecology, macro-ecology and biogeography. You will use these to explore how communities are structured in relation to local-scale to regional-scale processes, how they function and respond to perturbations at different scales, and result in emergent macro- to global-scale patterns of biodiversity distribution. Throughout the module, there is an emphasis on the relevance of theory and fundamental science to understanding the current environmental and biodiversity crisis. Anthropogenic impacts on natural communities through land-use, species exploitation, non-native species, and climate change, are a recurrent theme underpinning the examples you will draw upon.

BIO-5014B

20

ENVIRONMENTAL POLITICS AND POLICY MAKING

The most significant obstacles to problem solving are often political, not scientific or technological. This module examines the emergence and processes of environmental politics. It analyses these from different theoretical perspectives, particularly theories of power and public policy making. The module is focused on contemporary examples of politics and policy making at UK, EU and international levels. The module supports student-led learning by enabling you to select (and develop your own theoretical interpretations of) 'real world' examples of politics. Assessment will be via seminar presentations and a case study essay. The module assumes no prior knowledge of politics.

ENV-5002B

20

GEOGRAPHIES OF DEVELOPMENT

What is uneven development and why should we care about it? How did uneven development emerge, and what can we do about it? This module focuses on how geographers have engaged with these questions from different perspectives, including economic, environmental and social. You will explore how economic geographers (and geographical economists) have sought to explain the spatiality and unevenness of economic activity, including examining the evidence for 'natural advantage'. You will engage with geographical work on urban restructuring and environmental governance which have seen uneven development as a product of capitalism, and consider the influence of Marxist theory on geographical thought. You will also consider how both ordinary people and civil society have tried to address, contest and resist spatial difference and uneven development. Questions of scale emerge in various forms through the module, which demonstrates how understanding 'uneven development' is a fundamentally geographical endeavour by exploring some of the key geographies of development.

DEV-5010B

20

GEOMORPHOLOGY

Geomorphology is the scientific study of landforms and the processes that shape them, it underpins numerous subjects including: sedimentology, palaeoclimatology, biodiversity, ecosystem services, natural hazards and natural resources. In this module you will be introduced to different landforms and gain an understanding of the earth surface processes that create these landforms. Our approach will be both descriptive and quantitative, based on understanding erosional and depositional concepts, weathering and sediment transport and the evolution of landscapes. Drawing from our own research, the emphasis will be on local East Anglian field sites as case studies (with half and full day field trips) with key international examples, to illustrate and improve your understanding of glacial geomorphology, coastal geomorphology, ecogeomorphology and mountain/river/slope geomorphology with some arid geomorphology. You will learn about and apply the methods and different types of data and evidence used by geomorphologists (e.g., maps, imagery and field observations/measurements) to understand landform creation and evolution, gaining numerous transferrable skills.

ENV-5034A

20

GLOBAL TECTONICS

Processes in the Earth's interior exert a profound influence on all aspects of the Earth's system, and have done so throughout geological time. This module is designed for you to explore all aspects of those processes from the creation and destruction of tectonic plates to the structure of the Earth's interior and the distribution and dissipation of energy within it. This will include: the theory and mechanisms of plate tectonics, the generation of magma and volcanism; the mechanisms behind earthquakes. You will also cover the geological record of this activity, its evolution and impacts on the Earth.

ENV-5018A

20

HYDROLOGY AND HYDROGEOLOGY

Hydrology and hydrogeology are Earth Science subjects concerned with the assessment of the natural distribution of water in time and space and the evaluation of human impacts on the water. This module provides an introduction to geological controls on groundwater occurrence, aquifer characteristics, basic principles of groundwater flow, basic hydrochemistry, an introduction to catchment hydrology, hydrological data collection and analysis, runoff generation processes and the principles of rainfall-runoff modelling. Practical classes develop analytical skills in solving problems as well as field skills in pumping test analysis and stream gauging. A field excursion in Norfolk is also offered in this module.

ENV-5021A

20

LOW CARBON ENERGY: SCIENCE AND TECHNOLOGY

This module examines the principles of energy science and technologies including energy generation and conversion, such as renewables, bioenergy and batteries. It provides a systematic and integrated account of the issues in energy resources and conversion. This knowledge is used to make a rational analysis of energy availability, applications and selections from physical, technical and environmental considerations. It also provides students with the opportunity to explore the future of energy provision in greater depth.

ENV-5022B

20

METEOROLOGY I

The weather affects everyone and influences decisions that are made on a daily basis around the world. From whether to hang your washing out on a sunny afternoon, to which route a commercial aircraft takes as it travels across the ocean, weather plays a vital role. With that in mind, what actually causes the weather we experience? In this module you'll learn the fundamentals of the science of meteorology. You'll concentrate on the physical process that allow moisture and radiation to transfer through the atmosphere and how they ultimately influence our weather. The module contains both descriptive and mathematical treatments of radiation balance, thermodynamics, dynamics, boundary layers, weather systems and the water cycle. The module is assessed through a combination of one piece of coursework and an exam, and is designed in a way that allows those with either mathematical or descriptive abilities to do well, although a reasonable mathematical competence is essential, including basic understanding of differentiation and integration.

ENV-5008A

20

PEOPLE AND PLACE

This module will develop your theoretical and empirical understanding of how social environments in different places affect people's health or ill-health. It is about the geographies of health. You will develop knowledge about how ill-health and health inequalities are linked to socio-economic inequalities, poverty and marginalisation. You will be able to apply this knowledge to questions of health policy and interventions designed to improve health. A key conceptual framework for this module is the social determinants of health (SDH). This includes analysis of the risk environment for ill-health, influenced by social structures (such as gender or class) in a particular setting, how people make a living (their livelihoods), environmental change and the nature of health policy and the health services available to people. We are therefore also interested in the interventions which can help deal with risk environments, to make people less susceptible to disease and less vulnerable when they become ill. You will learn how some places have achieved good health. The module is inter-disciplinary, drawing on theories and evidence from disciplines such as sociology, anthropology, public health and development studies, and to a lesser extent economics, demography and epidemiology. It also provides an understanding of the ways different cultures and societies define and understand health and ill-health and why some diseases are highly stigmatised. Case studies from different places and of different diseases are used to illustrate the social determinants of health, including infectious diseases (such as HIV, malaria, Ebola) and non-communicable diseases.

DEV-5011A

20

POPULATION ECOLOGY AND MANAGEMENT

We live in a human dominated era recently designated "the Anthropocene". Humans harvest more than half of the primary productivity of the planet, many resources are over-exploited or depleted (e.g. fisheries) never before it was so important to correctly manage natural resources for an exponentially growing human population. It is, thus, fundamental to predict where other species occur and the sizes of their populations (abundance). Population Ecology is an area dedicated to the dynamics of population development. In this module we will look closely at how populations are regulated, from within through density dependent factors and from external density independent factors. We start the module with a global environmental change perspective to the management of populations and the factors that affect the population size. We then extend these ideas to help us understand population properties and processes both intra-specifically and inter-specifically. Finally we examine several management applications where we show that a good understanding of the population modelling is essential to correctly manage natural resources on the planet. Practicals include learning to survey butterflies and birds using citizen science monitoring projects and will be focused on delivering statistical analyses of "Big data" using the programme R. The projects will provide a strong training in both subject specific and transferrable skills.

ENV-5014A

20

SEDIMENTOLOGY

Sediments and sedimentary rocks cover much of the Earth's surface, but how do they get there and what can they tell us? If you are a geologist or environmental scientist with particular interest in physical geography then this is a key issue that you need to think about. Sediments record the Earth's history of environmental change, a record that started 3.8 billion years ago. Sediments contain the fossil record and host many of the world's natural resources including water, hydrocarbons, and minerals. In this module you will discover how sedimentologists decode the wealth of information sediments contain, taught by two practicing sedimentologists who have international research reputations in their respective fields. This module includes the study of modern sediments in a range of environments including rivers, the continental shelf and deep ocean basins. We put particular emphasis on the physical and chemical processes that result in the deposition of different sediment types. We then use this basis to interpret the origin and processes that formed ancient sedimentary rocks. The module emphasises development of practical skills in the laboratory, and also in the field.

ENV-5035B

20

SHELF SEA DYNAMICS AND COASTAL PROCESSES

The shallow shelf seas that surround the continents are the oceans that we most interact with. They contribute a disproportionate amount to global marine primary production and CO2 drawdown into the ocean, and are important economically through commercial fisheries, offshore oil and gas exploration, and renewable energy developments (e.g. offshore wind farms). You will explore the physical processes that occur in shelf seas and coastal waters, their effect on biological, chemical and sedimentary processes, and how they can be harnessed to generate renewable energy. You will develop new skills during this module that will support careers in the offshore oil and gas industry, renewable energy industry, environmental consultancy, government laboratories (e.g. Cefas) and academia. The level of mathematical ability required to take this module is similar to Ocean Circulation and Meteorology I. You should be familiar with radians, rearranging equations and plotting functions.

ENV-5017B

20

SOIL PROCESSES AND ENVIRONMENTAL ISSUES

Through lectures, practical work, seminars and fieldwork, you'll explore the soil environment and the processes that occur within it. You'll gain an understanding of: basic soil components/properties; soil identification and classification; soil as a habitat; soil organisms; soil functions; the agricultural environment; soil-organism-agrochemical interaction; soil contamination; soil and climate change; soil ecosystem services and soil quality.

ENV-5012A

20

THE ORIGINS OF THE ENGLISH LANDSCAPE 4000BC TO 1066AD

We will study the development of the English landscape from early prehistoric times to the late Anglo Saxon period, and you will learn to identify and interpret key landscape features from the Neolithic, Bronze and Iron Ages before moving on to study Roman and Anglo Saxon landscapes. Lectures, seminars and field trips will provide you with an introduction to the approaches and sources used by landscape historians and landscape archaeologists. You will develop your understanding of landscape history through the study of key sites such as Stonehenge, Hadrian's Wall and Sutton Hoo. The chronological approach of the module will provide you with an understanding of long term landscape change, telling the story of the English landscape from prehistory to the eve of the Norman Conquest.

HIS-5002A

20

WEATHER APPLICATIONS

This module will build upon material covered in Meteorology I, by covering topics such as synoptic meteorology, weather hazards, micro-meteorology, further thermodynamics and weather forecasting. The module includes a major summative coursework assignment based on data collected on a UEA meteorology fieldcourse in a previous year.

ENV-5009B

20

Students will select 0 - 20 credits from the following modules:

Name Code Credits

EDUCATIONAL PSYCHOLOGY

This module will provide you with an introduction to key areas of psychology with a focus on learning and teaching in education. By the end of the module you should be able to: - Discuss the role of perception, attention and memory in learning; - Compare and contrast key theories related to learning, intelligence, language, thinking and reasoning; - Critically reflect on key theories related to learning,intelligence, language, thinking and reasoning in the practical context; - Discuss the influence of key intrapersonal, interpersonal and situational factors on pupils learning and engagement in educational settings. Assessment: Coursework 100%

EDUB5012A

20

ENVIRONMENTAL EDUCATION AND OUTDOOR LEARNING

This module is about gaining insights into the benefits of learning outside the classroom and developing an understanding about the possible activities which can be undertaken to enhance the learning and wellbeing of varying groups at various stages of development. You will undertake a range of fieldwork activities, led by those with experience in organising and leading educational visits and whilst doing this, develop skills which will enable you to make effective and informed decisions in organising your own educational visits. You will also organise and spend a day with a provider who runs educational visits to gain insights in to this industry. The learning objectives of this module are to: #Understand the terminology associated with outdoor learning, environmental education, educational visits and fieldwork; #Become familiar with aspects of the perceived curricular, social, affective and behavioural benefits of outdoor learning and educational visits; #Reflect upon the significance of prior experiences as starting points for fieldwork participation and reflection; #Understand how different fieldwork approaches can relate to learning outcomes; #Gain insights into the logistical and organisational arrangements associated with arranging educational visits; #Appreciate different methods of data collection associated with fieldwork tasks; #Gain a knowledge of issues and places through first-hand participation in fieldwork. By the end of this module you will be able to: #Identify and critically reflect upon evidence from informed, effective educational visits and fieldwork investigations; #Engage with professional educational visit providers to arrange appropriate fieldwork for your target audience; #Provide evidence based rationale for educational visits; #Identify and critique suitable locations based on a knowledge of risk assessment and logistics of fieldwork; #Effectively evaluate fieldwork approaches to the learning outcomes you identify. Assessment: Coursework 100%

EDUB5004B

20

WHAT IS TEACHING? THE TEACHER'S ROLE AND PRACTICE IN DIFFERENT SETTINGS

You'll explore and gain insight into the nature of' 'teaching' and 'learning' in a range of educational institutions and settings in the UK. By the end of this module you'll be expected to understand: what it means to be a teacher in different educational contexts; a range of teaching strategies and practices used to support effective learning in various settings and the need for a critical appreciation of the function of different educational institutions, the opportunities they offer and their cultural contexts. There will be opportunities to investigate specific aspects of teaching which are of particular interest to individuals.

EDUB5001A

20

Students must study the following modules for 60 credits:

Name Code Credits

EDUCATION RESEARCH

EDU-6001Y

20

INDEPENDENT PROJECT

With guidance from a supervisor, you will choose a topic, design the research and collect, analyse and interpret data. You will report on progress at various stages: in the selection of a topic, the detailed plan, an interim report and an oral presentation. A final report in the form of a dissertation not exceeding 10,000 words is required. When planning the project and again after completing the report, you will reflect on the range of subject-specific and generic skills acquired through your degree and how these are reinforced and complemented by skills acquired through your project. A final item of summative work assesses the clarity by which you communicate and evidences your range of skills in the form of a covering letter and cv for a potential job application. To further support the transition to employment you can present a formative research poster that summarises the main aspects of the work to prospective employers. This module is compulsory for all degree courses in the School of Environmental Sciences and is an independent piece of research.

ENV-6021A

40

Students will select 0 - 20 credits from the following modules:

Name Code Credits

FIELD COURSE TO EAST AFRICA

This fourteen-day field course is based at Marich Pass Field Studies Centre, in a remote part of north-western Kenya. The course is set provisionally for early July 2018 and will only run if a minimum of 24 students in their second year (which must be based at UEA), accept a place. Acceptance of a place is also a commitment to meeting the personal contribution to costs. You will work in three-person groups and with the help of a local guide, carry out a field project of your choice from geography, social sciences, natural resources or ecology with the project topic progressing from modules taken in YR2.

ENV-6015K

20

GEOGRAPHY AND ENVIRONMENTAL SCIENCES FIELD COURSE TO SPAIN

This module seeks to promote a deeper understanding of the interactions between the natural environment and human society through field-based teaching and project work in Almeria, southern Spain. The region provides classic examples of landform evolution and arid environments, as well as experiencing major socio-economic changes in recent decades. Field activities will focus on such issues as agriculture, water resources, renewable energy and adaptation to climate change. Methods for evaluating the sustainability of developments will be examined. The module is assessed by an individual evidence report and public communication item. You will need to contribute 50% of the field course costs (the remainder is paid by the School). The precise cost will depend on the GBP to Euro exchange rate at the time bookings are made but a best estimate as of October 2017 is likely to be in the range GBP420 to GBP450. In addition, the field course will run only if a minimum number of 21 students enrol and commit to paying the student contribution. If interest exceeds the maximum number that the field centre can accommodate then priority will be given to students according to the number of possible prerequisite modules they have taken.

ENV-6030K

20

GEOSCIENCES FIELD COURSE TO SPAIN

During this field course you will develop a deeper understanding and integration of geoscience subjects through the development of field observation, recording and interpretation skills in areas of classic field geology. This fieldcourse is in the Almeria province of southern Spain where you will study a range of rock types sedimentary rocks to folded and metamorphic solid geology which form alpine belts. Your interpretive skills will include reading the rock record to unravel evidence for deep to shallow to marginal basin environments, with climatic and tectonic controls on the sedimentary fill of a basin. Also the evidence for strike-slip systems and associated sub-marine Miocene volcanism.

ENV-6029K

20

Students will select 40 - 80 credits from the following modules:

Name Code Credits

BIODIVERSITY CONSERVATION AND HUMAN SOCIETY

l focus on the interactions between biodiversity and human societies. The module adopts a rigorous evidence-based approach. You will first critically examine the human drivers of biodiversity loss and the importance of biodiversity to human society, to understand how underlying perspectives and motivations influence approaches to conservation. You will then examine conflicts between human society and conservation and how these potentially can be resolved, reviewing institutions and potential instruments for biodiversity conservation in both Europe and developing countries. Coursework is inter-disciplinary and will require you to evaluate and communicate the quality of evidence showing effectiveness of conservation interventions and approaches.

ENV-6006A

20

CATCHMENT WATER RESOURCES

In this module, you will adopt an integrated approach to studying surface water and groundwater resources in river basins. You will address the fundamental requirement for an interdisciplinary catchment-based approach to managing and protecting water resources that includes an understanding of land use and its management. The module content includes the design of catchment monitoring programmes, nutrient mass balance calculations, river restoration techniques, an overview of UK and European agri-environmental policy and approaches to assessing and mitigating catchment flooding.

ENV-6018B

20

CLIMATE SYSTEMS

What sets the mean global temperature of the world? Why are some parts of the world arid whilst others at the same latitudes are humid? This module aims to provide you with an understanding of the processes that determine why the Earth's climate (defined, for example, by temperature and moisture distribution) looks like it does, what the major circulation patterns and climate zones are and how they arise. You will study why the climate changes in time over different timescales, and how we use this knowledge to understand the climate systems of other planets. This module is aimed at you if you wish to further your knowledge of climate, or want a base for any future study of climate change, such as the Meteorology/Oceanography or Climate Change degrees.

ENV-6025B

20

ENERGY AND PEOPLE

Modern everyday life rests fundamentally on the availability of energy. Since the 1970s, however, serious concerns have been raised about the sustainability of current energy systems. Traditionally, these problems have been analysed (and solutions proposed) from within the engineering and physical sciences. Understanding, managing and attempting to solve energy problems, however, demands a thorough appreciation of how people, at a range of scales, engage with energy in the course of their daily lives. This is a critical challenge for the social sciences, and will be a core focus of this module. Through this module, you will discover and explore a range of social science perspectives on the inter-relationships between energy and people. You will learn how to apply these ideas to contemporary energy problems and use them to generate your own visions for a sustainable energy future. You'll also be given the chance to work as part of a team and to communicate your ideas through both written and oral presentation. You'll begin by tracing the history and development of energy intensive societies and everyday lives as a means of understanding how energy has emerged as a key sustainability problem. You'll then go into more depth around different theories of social and technical change before exploring how these can be used to critically analyse a range of people-based solutions to energy problems that are currently being tried and tested around the world. You'll learn through a combination of lectures and seminars involving interactive group projects, class debates, practical exercises and student-led learning. At the end of the module, you will have developed the knowledge, skills and experience necessary to allow you to apply theories of social and technical change to a range of real-world energy problems. You'll be able to develop and critically analyse your own (and already existing) visions of a sustainable energy future, and you'll be able to creatively communicate these ideas to a range of different audiences. Please note, this is a strongly social science based module and is not recommended for students without a strong grounding in social science thinking and principle.

ENV-6026B

20

FOSSIL FUELS

You will be introduced to geological, economic and political aspects of fossil fuels (oil, natural gas and coal). These are used to discuss environmental concerns arising from the use of fossil fuels, and the potentially profound implications of future fuel scarcity on society. Some knowledge of Earth science and basic Chemistry will be expected.

ENV-6009A

20

GEOPHYSICAL HAZARDS

Geophysical hazards such as earthquakes, volcanic eruptions, tsunamis and landslides have significant environmental and societal impacts. This module focuses on the physical basis and analysis of each hazard, their global range of occurrence, probability of occurrence and their local and global impact. You will address matters such as hazard monitoring, modelling and assessment, and consider approaches towards risk mitigation and the reduction of vulnerability (individual and societal), with an emphasis on their practical implementation. Scenarios and probabilities of mega-disasters are also investigated. All the teaching faculty involved have practical experience of supplying professional advice on these hazards (and related risks) in addition to their own research involvement. A basic knowledge of physical science and of mathematics is assumed e.g. use of logs, exponentials, powers, cosines, rearrangement of equations.

ENV-6001B

20

HYDROLOGY AND HYDROGEOLOGY

Hydrology and hydrogeology are Earth Science subjects concerned with the assessment of the natural distribution of water in time and space and the evaluation of human impacts on the water. This module provides an introduction to geological controls on groundwater occurrence, aquifer characteristics, basic principles of groundwater flow, basic hydrochemistry, an introduction to catchment hydrology, hydrological data collection and analysis, runoff generation processes and the principles of rainfall-runoff modelling. Practical classes develop analytical skills in solving problems as well as field skills in pumping test analysis and stream gauging. A field excursion in Norfolk is also offered in this module.

ENV-5021A

20

NATURAL RESOURCES AND ENVIRONMENTAL ECONOMICS

Environmental economics provides a set of tools and principles which can be useful in understanding natural resource management issues. This module introduces you to key principles and tools of environmental economics for students who have not studied the subject previously. It then explores how these principles can be applied to address a number of complex economy-environment problems including climate change, over-fishing and water resources management. In this module you will have the opportunity to practically apply cost-benefit analysis as a framework for decision-making and will gain knowledge on the key non-market valuation techniques that are used to monetarily value environmental goods and services. At the end of the module you will have gained insights into how environmental economics is used in developing natural resource management policy as well as some of the challenges in using environmental economics in policy-making.

ENV-6012B

20

PALAEOCLIMATOLOGY

This module examines the geological evidence for climatic change through the Quaternary Period (the last 2.6 million years) and the longer-term evolution of climate through the Cenozoic Era (the last 65 million years). You will explore the interpretation and causal mechanisms behind these major global environmental changes using a diverse range of approaches - isotope geochemistry, sedimentology, palaeoecology and organic geochemistry. We will focus on the geochemical, biological and sedimentological information that can be obtained from marine sediments, ice cores, and terrestrial environments and use these records to reconstruct the timing extent and magnitude of selected climatic events in the geological record.

ENV-6017B

20

THE CARBON CYCLE AND CLIMATE CHANGE

What do you know about the drivers of climate change? Carbon dioxide (CO2) is the greenhouse gas that has, by far, the greatest impact on climate change, but how carbon cycles through the Earth is complex and not fully understood. Predicting future climate or defining 'dangerous' climate change is therefore challenging. In this module you will learn about the atmosphere, ocean and land components of the carbon cycle. We cover urgent global issues such as ocean acidification and how to get off our fossil fuel 'addiction', as well as how to deal with climate denialists.

ENV-6008A

20

URBAN GEOGRAPHIES

This module will examine the historical and contemporary development and governance of urban centres around the globe. In order to understand these processes, we will explore both the structure of human settlements and the multiple relationships and processes that shape and reshape urban spaces. We will examine the changing environmental, political, social, and economic dynamics of cities and smaller urban centres, drawing on case studies from the global north and the global south. The module will cover a range of concepts and topics which have preoccupied urban geographers, including but not limited to: urbanisation and urban growth patterns; urban economic restructuring and neoliberalism; urban infrastructure; poverty and inequality; informality; migration; citizenship; urban nature; and race and sexuality in the city. A one-day field trip focusing on urban planning and regeneration is an integral part of the module.

DEV-6010B

20

Students will select 0 - 20 credits from the following modules:

Name Code Credits

CHILDREN, TEACHERS AND MATHEMATICS

This module will introduce you to key issues in mathematics education, particularly those that relate to the years of compulsory schooling. Specifically in this module we: Introduce the mathematics curriculum and pupils' perception of, and difficulties with, key mathematical concepts; Discuss public and popular culture perceptions of mathematics, mathematical ability and mathematicians as well as address ways in which these perceptions can be modified; Outline and discuss specific pedagogical actions (focused on challenge and motivation) that can be taken as early as possible during children's schooling and can provide a solid basis for pupils' understanding and appreciation of mathematics. By the end of the module you will be able to: Gain understanding of key curricular, pedagogical and social issues that relate to the teaching and learning of mathematics, a crucial subject area in the curriculum; Reflect on pedagogical action that aims to address those issues, particularly in the years of compulsory schooling; Be informed and able to consider the potential of pursuing a career in education, either as a teacher, educational professional or researcher in education with particular specialisation in the teaching and learning of mathematics. Assessment: Written Assignment 40% 3000 words Mini Project 60% 4500 words

EDUB6006A

20

MOTIVATION IN EDUCATION

Aim: This module is designed to introduce students to the psychological process underpinning motivated behaviour in education settings. You will examine the role of the teacher in creating motivational climates for learning and assessing some of the key motivational challenges that may occur in educational settings. Learning Outcomes: a) Critically examine a range of intrapersonal, interpersonal and situational influences on motivation in education; b) Apply a range of motivational theories to understand motivated behaviour in education settings; c) Critically examine the role of the teacher in motivating students in educational settings; d) Understand how to overcome key motivational challenges, such as learned helplessness, self-handicapping, procrastination and disengagement in educational settings. Content: What is motivated behaviour?; outcomes of motivated behaviour (e.g. effort, persistence, task choice); motivation through feelings of competence, confidence and control; motivational theories(e.g. attribution theory, expectancy-value theory, achievement goal theory, self-determination theory); interest and value; motivational climates (e.g. TARGET and autonomy-supportive); effects of rewards on motivation; motivational challenges (self-handicapping, procrastination, disengagement, learned helplessness, perfectionism); social influences; teacher-pupil relationship.

EDUB6016A

20

SCIENCE COMMUNICATION

You will gain an understanding of how science is disseminated to the public and explore the theories surrounding learning and communication. You will investigate science as a culture and how this culture interfaces with the public. Examining case studies in a variety of different scientific areas, looking at how information is released in scientific literature and how this is subsequently picked up by the public press will provide you with an understanding of the importance of science communication. You will gain an appreciation of how science information can be used to change public perception and how it can sometimes be misinterpreted. You will also learn practical skills by designing, running and evaluating a public outreach event at a school or in a public area. If you wish to take this module, you will be required to write a statement of selection. These statements will be assessed and students will be allocated to the module accordingly.

BIO-6018Y

20

Disclaimer

Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. In some cases optional modules can have limited places available and so you may be asked to make additional module choices in the event you do not gain a place on your first choice. Where this is the case, the University will endeavour to inform students.

Further Reading

  • RGS IBG Accreditation

    “RGS accreditation is highly valued by graduate employers as well as by current and prospective students alike so we are really pleased that our degrees have been recognised.” Dr Gill Seyfang

    Read it RGS IBG Accreditation
  • Ask a Student

    This is your chance to ask UEA's students about UEA, university life, Norwich and anything else you would like an answer to.

    Read it Ask a Student
  • celebrate 50 years

    Find out about the impact UEA has made over the past 50 years

    Read it celebrate 50 years
  • TOP 12 FACTS ABOUT THE SCHOOL

    Twelve things you need to know about the School of Environmental Sciences.

    Read it TOP 12 FACTS ABOUT THE SCHOOL
  • UNIVERSITY TASTER EVENTS

    Come to one of our taster events and experience university life for yourself. Book now

    Read it UNIVERSITY TASTER EVENTS
  • UEA Award

    Develop your skills, build a strong CV and focus your extra-curricular activities while studying with our employer-valued UEA award.

    Read it UEA Award
  • HEAR FROM OUR STUDENTS

    Find out what it’s like to be a part of the School of Environmental Sciences at UEA.

    Read it HEAR FROM OUR STUDENTS

Entry Requirements

  • A Level BBB to include Geography. Science A-levels must include a pass in the practical element.
  • International Baccalaureate 31 overall including HL5 Geography.
  • Scottish Advanced Highers CCC to include Geography.
  • Irish Leaving Certificate 2 subjects at H2 and 4 subjects at H3 including Geography.
  • Access Course Pass the Access to HE Diploma with Merit in 45 level 3 credits, including 12 Level 3 credits in Geography.
  • BTEC DDM in a relevant subject area including 6 units of Geography. BTEC Public Services is not accepted. BTEC and A-level combinations are considered - please contact us.
  • European Baccalaureate 70% overall, including at least 70% in Geography.

Entry Requirement

GCSE Requirements:  GCSE English Language grade 4/C and GCSE Mathematics grade 4/C. 

General Studies and Critical Thinking are not accepted. 

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including speaking, listening, reading and writing) at the following level:

  • IELTS: 6.5 overall (minimum 6.0 in any component)

We will also accept a number of other English language qualifications. Review our English Language Equivalences here.

INTO University of East Anglia 

If you do not yet meet the English language requirements for this course, INTO UEA offer a variety of English language programmes which are designed to help you develop the English skills necessary for successful undergraduate study:

Interviews

The majority of candidates will not be called for an interview. However, for some students an interview will be requested. These are normally quite informal and generally cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year, believing that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and may wish to contact the appropriate Admissions Office directly to discuss this further.

Alternative Qualifications

We encourage you to apply if you have alternative qualifications equivalent to our stated entry requirements. Please contact us for further information.

Fees and Funding

Undergraduate University Fees and Financial Support

Tuition Fees

Information on tuition fees can be found here:

UK students

EU Students

Overseas Students

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. 

The University of East Anglia offers a range of Scholarships; please click the link for eligibility, details of how to apply and closing dates.

How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The system allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it must be sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The UCAS code name and number for the University of East Anglia is EANGL E14.

Further Information

If you would like to discuss your individual circumstances with the Admissions Service prior to applying please do contact us:

Undergraduate Admissions Service
Tel: +44 (0)1603 591515
Email: admissions@uea.ac.uk

Please click here to register your details via our Online Enquiry Form.

International candidates are also actively encouraged to access the University's International section of our website.

    Next Steps

    We can’t wait to hear from you. Just pop any questions about this course into the form below and our enquiries team will answer as soon as they can.

    Admissions enquiries:
    admissions@uea.ac.uk or
    telephone +44 (0)1603 591515