BSc Geography

Video

We have one of the largest interdisciplinary Environmental Sciences departments in Europe, offering innovative Geography degrees informed by pioneering research that makes a real difference.

Watch It

Video

We have been awarded a Queen’s Anniversary Prize for Higher and Further Education for 50 years of ground-breaking environmental science at UEA. The royal accolade from the Queen is the UK’s most prestigious higher education award.

Watch It

Article

What's it like living in the shadow of a volcano? UEA's Environmental Scientists have been working with communities in Latin America to reduce the impact of eruptions.

Read It

Article

Water Baby

What's making the antarctic melt? We've put robots into the ocean to unlock the complexities of warm water.

Read It

Key facts

(2014 Research Excellence Framework)

Video

View our video about Field Courses.

Watch It
Our BSc Geography degree focuses on the physical impact of our changing world. You will explore real-world problems, such as rising sea levels, climate change, and environmental hazards.

During your first year you will gain a solid understanding of the challenges facing this dynamic planet, such as biodiversity and the Earth’s systems. As the course progresses, you will have the opportunity to develop valuable, practical experience through various field courses, alongside the opportunity to acquire specialist theoretical knowledge in such areas as hydrology, the science and politics of climate change, Palaeoclimatology, Population Ecology and Management, or Environmental Economics.

When you choose to study BSc Geography at UEA you’ll be joining a community that is renowned for its cutting-edge research – we’re ranked first in the UK for research impact (REF 2014) and have a global reputation for excellence in Environmental Sciences.

Overview

Please note that this course is available for entry in September 2018 onwards.

Physical geography is concerned with some of the world’s most pressing problems. As the world changes – whether through rising sea levels, environmental hazards or climate – our understanding of it must change too.

Our BSc Geography degree gives you the skills and knowledge to understand and investigate these problems, with an emphasis on the physical dimensions of environmental change through the study of rivers, oceans, the atmosphere, the environment, tectonic plates and volcanic regions.

You will gain a broad understanding of geographical concepts and issues, as well as how to collect data, formulate research questions, present results, and develop practical transferable skills. 

You will also have the chance to work on group projects, which encourage using teamwork to tackle complex geographical issues, and are a fantastic way to improve your communication skills, as well as the opportunity to develop your research and analytical skills through field work. 

By studying BSc Geography at UEA you can study modules in topics like climate change, meteorology and natural hazards to build a holistic picture of the Earth as a complex system that needs to be explored, understood and respected.

A subject of huge importance with exceptional career prospects

Geography produces some of the most employable graduates in the country. You’ll develop important practical knowledge, specialist training and a huge range of transferrable skills; from research and analysis to communication and teamwork.

Geography graduates enter a very wide range of career areas and have one of the highest rates of graduate employment, with potential employers spanning the private and public sectors, and particular opportunities at present with respect to climate change, energy systems and land or water resource management. 

Opportunities for internships exist with many organisations and our annual Careers Fair attracts a wide range of employers interested in graduates with geographical skills. You may also decide to move onto our four-year Year in Industry programme, where the third year is spent away from UEA working in an external organisation.

Study in a progressive, world-renowned and diverse school

UEA has one of the best Environmental Science schools in the world (World Top 100, QS Subject Rankings 2017), producing some of the most important research in the country (First for Research Impact in REF 2014). 

That means you’ll have the chance to study with world-leading academics; benefit from cutting-edge facilities; and choose modules from a huge and varied range thanks to the vast expertise in our departments.

The course

This three-year course covers a broad range of topics in geography, moving from a first year that provides you with an essential foundation, through to more flexible second and third years. The course culminates in an independent research project and there are opportunities to participate in field courses in all three years of the degree.

Year 1

Your first year is designed to give you a broad understanding of the challenges facing contemporary geographers, underpinned by an introduction to fundamental research techniques to appreciate what methods physical geographers can use to analyse and understand the world.

Year 2

In the second year, you’ll gain valuable technical expertise through the GIS Skills for Project Work module, before choosing from a range of options including: Geomorphology; Population Ecology and Management; Climate Change; Science and Policy and Global Tectonics.

Year 3

In your third year you will spend a substantial amount of time on your Independent Project. This accounts for a third of the final year assessment and provides a brilliant opportunity to put everything you’ve learnt throughout your degree into practice, as well as a chance to specialise in a topic that really fascinates you with the supervision of a world-class expert.

There are also further optional modules to study, including: Geophysical Hazards; Biodiversity, Conservation and Human Society; The Carbon Cycle and Climate Change; Catchment Water Resources; Natural Resources and Environmental Economics; Geophysical Hazards - your options could also include a Field Course to Greece or Spain.

Course Modules 2018/9

Students must study the following modules for 80 credits:

Name Code Credits

GEOGRAPHICAL PERSPECTIVES

This module provides an introduction and orientation regarding geographical thought, methods and concepts. It begins with an overview of the history and development of the discipline. This leads on to discussion of core concepts such as space, place, scale, systems, nature, landscape and risk. In addition, the methods and different types of evidence used by geographers are introduced. You will be able to demonstrate an appreciation of the diversity of approaches to the generation of geographical knowledge and understanding and the capacity to communicate geographical ideas, principles, and theories effectively and fluently by written, oral and visual means.

ENV-4010Y

20

GLOBAL ENVIRONMENTAL CHALLENGES

What are the most pressing environmental challenges facing the world today? How do we understand these problems through cutting-edge environmental science research? What are the possibilities for building sustainable solutions to address them in policy and society? In this module you will tackle these questions by taking an interdisciplinary approach to consider challenges relating to climate change, biodiversity, water resources, natural hazards, and technological risks. In doing so you will gain an insight into environmental science research 'in action' and develop essential academic study skills needed to explore these issues.

ENV-4001A

20

RESEARCH AND FIELD SKILLS

You will develop a range of transferable skills, tools and resources that are widely used in research across the Environmental Sciences and Geography. It aims to provide a broad understanding of the research process through activities that involve formulating research questions, collecting data using appropriate sources and techniques, collating and evaluating information and presenting results. A week-long residential field course, held at Easter and based at Slapton Ley, Devon, applies field, lab and other skills to a variety of environmental science and geography topics. Depending on the size of the cohort, students on selected degree programmes may be offered the option of an alternative field course arrangement.

ENV-4004Y

20

UNDERSTANDING THE DYNAMIC PLANET

Understanding of natural systems is underpinned by physical laws and processes. You will explore the energy, mechanics, and physical properties of Earth materials and their relevance to environmental science using examples from across the Earth's differing systems. The formation, subsequent evolution and current state of our planet are considered through its structure and behaviour - from the planetary interior to the dynamic surface and into the atmosphere. You will study Plate Tectonics to explain Earth's physiographic features - such as mountain belts and volcanoes - and how the processes of erosion and deposition modify them. The distribution of land masses is tied to global patterns of rock, ice and soil distribution and to atmospheric and ocean circulation. You will also explore geological time - the 4.6 billion year record of changing conditions on the planet - and how geological maps can be used to understand Earth history. This course provides you with an introduction to geological materials - rocks, minerals and sediments - and to geological resources and natural hazards.

ENV-4005A

20

Students will select 20 credits from the following modules:

Name Code Credits

ADVANCED QUANTITATIVE SKILLS

Mathematical and statistical skills are key to all brands of environmental sciences and geography. This module will strengthen your mathematical and statistical skills. It will consolidate your mathematics knowledge from GCSE level and will introduce you to differentiation and integration. You'll learn to recognise the purpose of simple statistical methods, to choose the appropriate methods to test hypotheses and to summarise data using tables and graphs. You'll use a computer package for statistical operations. You'll apply these quantitative skills to contemporary environmental and geographical problems, inspired by research in the School of Environmental Sciences. You'll be assessed through an online course test and an exam. This module will widen the range of science modules that you can take during your studies in geography and environmental sciences. Upon successful completion of the module, you'll have acquired skill in applying a range of mathematical and statistical methods to problems in environmental sciences and geography. Recommended if you have: A2 maths (D or E), AS Maths, A2 Physics (C or better), IB SL Maths (2, 3), IB SL Maths Studies, GCSE Maths (A, A*), CHE-0006.

ENV-4014Y

20

MATHEMATICS FOR SCIENTISTS A

You will cover differentiation, integration, vectors, partial differentiation, ordinary differential equations, further integrals, power series expansions, complex numbers and statistical methods as part of this module. In addition to the theoretical background there is an emphasis on applied examples. Previous knowledge of calculus is assumed. This module is the first in a series of three maths modules for those across the Faculty of Science that provide a solid undergraduate mathematical training. The follow-on modules are Mathematics for Scientists B and C.

ENV-4015Y

20

QUANTITATIVE METHODS

You will explore how quantitative skills can be applied to solve a range of environmental problems. Designed primarily for students who have a GCSE in maths at grade B or C, but no AS/ A2 qualification (or equivalent), the module will include a review of some fundamental GCSE-level maths but will focus on the practical use of maths through physical equations and mathematical models. You will also learn about summarising data using both numerical summaries and graphs, testing hypotheses and carrying out these analyses on computers.

ENV-4013Y

20

Students will select 20 credits from the following modules:

Students cannot select ENV-4007B and ENV-4008B.

Name Code Credits

ATMOSPHERE and OCEANS I

The habitability of planet Earth depends on physical and chemical systems that control everything from the weather and climate to the growth of all living organisms. This module introduces you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret them. It leads naturally to second and third year study of these systems in more detail, but even if you choose to study other aspects of environmental sciences, a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The module is made up of two distinct components. One focuses on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) The other focuses on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). Interrelationships between these components are explored throughout. Teaching of this module is through a mix of lectures, laboratory practical classes, workshops and a half-day field trip. This module provides a Basic Chemistry introduction for those students who have little or no background in chemistry prior to joining UEA.

ENV-4007B

20

ATMOSPHERE and OCEANS II

The habitability of planet Earth depends on physical and chemical systems that control everything from the weather and climate to the growth of all living organisms. This module introduces you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret them. It leads naturally to second and third year study of these systems in more detail, but even if you choose to study other aspects of environmental sciences, a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The module is made up of two distinct components. One focuses on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) The other focuses on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). Interrelationships between these components are explored throughout. Teaching of this module is through a mix of lectures, laboratory practical classes, workshops and a half-day field trip. This module is for students with previous experience of chemistry.

ENV-4008B

20

SUSTAINABILITY, SOCIETY AND BIODIVERSITY

Striking a balance between societal development, economic growth and environmental conservation has proven challenging and contentious at many scales. The concept of `sustainability' was coined to denote processes aiming to achieve this balance. This module introduces sustainable development, and examines why sustainability is so difficult to achieve, bringing together social and ecological dimensions. It also explores sustainability from an ecological perspective, introducing a range of concepts relevant to the structure and functioning of the biosphere and topics ranging from landscape and population ecology, to behavioural ecology, molecular ecology, and biodiversity conservation from single ornisms to the entire biomes. This module is assessed by coursework and an examination.

ENV-4006B

20

Students must study the following modules for 20 credits:

Name Code Credits

GIS SKILLS FOR PROJECT WORK

This module builds upon the introduction to GIS provided in the first year Research and Field Skills module, focusing on how you obtain your own data, integrate it together and then undertake analysis and presentation tasks. ESRI ArcGIS will be the main software used, but there will also be an introduction to scripting tools (Python), and open source software (QGIS) and online GIS (ArcGIS Online).

ENV-5028B

20

INDEPENDENT PROJECT - PROPOSAL

With guidance from a supervisor, you will choose a topic, design the research and collect, analyse and interpret data. You will report on progress at various stages: in the selection of a topic, the detailed plan, an interim report and an oral presentation. A final report in the form of a dissertation not exceeding 10,000 words is required. When planning the project and again after completing the report, you will reflect on the range of subject-specific and generic skills acquired through your degree and how these are reinforced and complemented by skills acquired through your project. A final item of summative work assesses the clarity by which you communicate and evidence your range of skills in the form of a covering letter and cv for a potential job application. To further support the transition to employment, you can present a formative research poster that summarises the main aspects of the work to prospective employers. This module is compulsory for all degree courses in the School of Environmental Sciences and is an independent piece of research.

ENV-6021B

0

Students will select 20 credits from the following modules:

Name Code Credits

AQUATIC ECOLOGY

Explore how chemical, physical and biological influences shape the biological communities of rivers, lakes and estuaries in temperate and tropical regions. Three field visits and laboratory work, usually using microscopes and sometimes analysing water quality, provide an important practical component to this module. A good complement to other ecology modules, final-year Catchment Water Resources and modules in development studies or geography, it can also be taken alongside Aquatic Biogeochemistry or other geochemical and hydrology modules. Students selecting this module must have a background in basic statistical analysis of data.

ENV-5001A

20

COMMUNITY, ECOSYSTEM AND MACRO-ECOLOGY

This module introduces you to major concepts and definitions in community ecology, macro-ecology and biogeography. You will use these to explore how communities are structured in relation to local-scale to regional-scale processes, how they function and respond to perturbations at different scales, and result in emergent macro- to global-scale patterns of biodiversity distribution. Throughout the module, there is an emphasis on the relevance of theory and fundamental science to understanding the current environmental and biodiversity crisis. Anthropogenic impacts on natural communities through land-use, species exploitation, non-native species, and climate change, are a recurrent theme underpinning the examples you will draw upon.

BIO-5014B

20

GEOMORPHOLOGY

Geomorphology is the scientific study of landforms and the processes that shape them, it underpins numerous subjects including: sedimentology, palaeoclimatology, biodiversity, ecosystem services, natural hazards and natural resources. In this module you will be introduced to different landforms and gain an understanding of the earth surface processes that create these landforms. Our approach will be both descriptive and quantitative, based on understanding erosional and depositional concepts, weathering and sediment transport and the evolution of landscapes. Drawing from our own research, the emphasis will be on local East Anglian field sites as case studies (with half and full day field trips) with key international examples, to illustrate and improve your understanding of glacial geomorphology, coastal geomorphology, ecogeomorphology and mountain/river/slope geomorphology with some arid geomorphology. You will learn about and apply the methods and different types of data and evidence used by geomorphologists (e.g., maps, imagery and field observations/measurements) to understand landform creation and evolution, gaining numerous transferrable skills.

ENV-5034A

20

METEOROLOGY I

The weather affects everyone and influences decisions that are made on a daily basis around the world. From whether to hang your washing out on a sunny afternoon, to which route a commercial aircraft takes as it travels across the ocean, weather plays a vital role. With that in mind, what actually causes the weather we experience? In this module you'll learn the fundamentals of the science of meteorology. You'll concentrate on the physical process that allow moisture and radiation to transfer through the atmosphere and how they ultimately influence our weather. The module contains both descriptive and mathematical treatments of radiation balance, thermodynamics, dynamics, boundary layers, weather systems and the water cycle. The module is assessed through a combination of one piece of coursework and an exam, and is designed in a way that allows those with either mathematical or descriptive abilities to do well, although a reasonable mathematical competence is essential, including basic understanding of differentiation and integration.

ENV-5008A

20

Students will select 20 - 40 credits from the following modules:

Students will select a minimum of 20 and a maximum of 40 credits from the following modules. These modules will provide appropriate skills for a related independent project. Students may not take two modules in the same timetable slot in the same semester. Note that students mist submit a request to the School for a place on field courses.

Name Code Credits

AQUATIC ECOLOGY

Explore how chemical, physical and biological influences shape the biological communities of rivers, lakes and estuaries in temperate and tropical regions. Three field visits and laboratory work, usually using microscopes and sometimes analysing water quality, provide an important practical component to this module. A good complement to other ecology modules, final-year Catchment Water Resources and modules in development studies or geography, it can also be taken alongside Aquatic Biogeochemistry or other geochemical and hydrology modules. Students selecting this module must have a background in basic statistical analysis of data.

ENV-5001A

20

GEOLOGY LAB SKILLS

Good observational and descriptive skills lie at the heart of many areas of Environmental Science. This module is designed to develop those and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects in this area. The module will include: observing, describing and recording the characteristics of geological materials (hand specimen and under microscope); measuring and representing 3d data, and reading geological maps. Co-requisite or pre-requisite of 40 or more credits from the list: ENV-5004B Applied Geophysics, ENV-5034A Geomorphology, ENV-5035B Sedimentology, ENV-5012A Soil Processes and Environmental issues, ENV-5018A Global Tectonics, ENV-5021A Hydrology and Hydrogeology, ENV-5005K Applied Geophysics with field course.

ENV-5029B

20

GEOLOGY SKILLS

This module is designed to develop good observational and descriptive skills and is particularly suitable for students with interests in Geology, Earth and Geophysical Sciences. It will cover generic Geological skills of use for projects. The module will include: observing, describing and recording the characteristics of geological materials (in the field, in hand specimen and under microscope); measuring and representing 3d data, reading geological maps and basic geological mapping. The module includes a week-long residential field work in the Easter vacation which has an added cost implication in the region of GBP300. Co-requisite or pre-requisite of 40 or more credits from the list: ENV-5004B Applied Geophysics, ENV-5034A Geomorphology, ENV-5035B Sedimentology, ENV-5012A Soil Processes and Environmental issues, ENV-5018A Global Tectonics, ENV-5021A Hydrology and Hydrogeology, ENV-5005K Applied Geophysics with field course.

ENV-5030B

20

FIELD ECOLOGY

This module aims to introduce you to a wide range of habitats and methods for studying the organisms and natural processes occurring in these habitats. The focus is on identification of species and on formulating and testing hypotheses to investigate interactions between species and their habitats or on examining environmental gradients. The module includes a two week residential field trip to Ireland before the start of the first semester in the autumn term. This module would suit you if you are interested in natural history, geography, ecology and designing and testing scientific hypotheses.

BIO-5013A

20

POPULATION ECOLOGY AND MANAGEMENT

We live in a human dominated era recently designated "the Anthropocene". Humans harvest more than half of the primary productivity of the planet, many resources are over-exploited or depleted (e.g. fisheries) never before it was so important to correctly manage natural resources for an exponentially growing human population. It is, thus, fundamental to predict where other species occur and the sizes of their populations (abundance). Population Ecology is an area dedicated to the dynamics of population development. In this module we will look closely at how populations are regulated, from within through density dependent factors and from external density independent factors. We start the module with a global environmental change perspective to the management of populations and the factors that affect the population size. We then extend these ideas to help us understand population properties and processes both intra-specifically and inter-specifically. Finally we examine several management applications where we show that a good understanding of the population modelling is essential to correctly manage natural resources on the planet. Practicals include learning to survey butterflies and birds using citizen science monitoring projects and will be focused on delivering statistical analyses of "Big data" using the programme R. The projects will provide a strong training in both subject specific and transferrable skills.

ENV-5014A

20

SEDIMENTOLOGY

Sediments and sedimentary rocks cover much of the Earth's surface, but how do they get there and what can they tell us? If you are a geologist or environmental scientist with particular interest in physical geography then this is a key issue that you need to think about. Sediments record the Earth's history of environmental change, a record that started 3.8 billion years ago. Sediments contain the fossil record and host many of the world's natural resources including water, hydrocarbons, and minerals. In this module you will discover how sedimentologists decode the wealth of information sediments contain, taught by two practicing sedimentologists who have international research reputations in their respective fields. This module includes the study of modern sediments in a range of environments including rivers, the continental shelf and deep ocean basins. We put particular emphasis on the physical and chemical processes that result in the deposition of different sediment types. We then use this basis to interpret the origin and processes that formed ancient sedimentary rocks. The module emphasises development of practical skills in the laboratory, and also in the field.

ENV-5035B

20

SOCIAL RESEARCH SKILLS FOR GEOGRAPHERS AND ENVIRONMENTAL SCIENTISTS

How do we respond to social and environmental change? Why are some of our beliefs and behaviours so persistent, even when we agree that they should change? How do people inhabit the places where they live and work? This module will provide you with tools to investigate the social, cultural, psychological and political processes that shape us and our world. Human geography and the environmental social sciences employ a range of approaches and methods with which to explore their diverse research questions. This module will introduce you to the practice of social science research, including methods that use quantitative (numerical) and qualitative (non-numerical) data. Through a combination of lectures, workshops, and practical activities, you will learn how to design and carry out your own research. By the end of the module you will know how to formulate an interesting research question; how to choose an appropriate method to investigate it; how to ensure that you collect good quality data; how to analyse and interpret your data; and how to present the results of your research. The module is recommended if you intend to use social research methods in your independent dissertation project. In addition to gaining practical research skills, you will develop your ability to critically evaluate research studies that use social science methods. As well as benefiting your academic studies, these analytical and practical research skills are highly valued in many occupational sectors.

ENV-5031B

20

SOCIAL RESEARCH SKILLS FOR GEOGRAPHERS AND ENVIRONMENTAL SCIENTISTS WITH FIELDCOURSE

How do we respond to social and environmental change? Why are some of our beliefs and behaviours so persistent, even when we agree that they should change? How do people inhabit the places where they live and work? This module will provide you with tools to investigate the social, cultural, psychological and political processes that shape us and our world. Human geography and the environmental social sciences employ a range of approaches and methods with which to explore their diverse research questions. This module will introduce you to the practice of social science research, including methods that use quantitative (numerical) and qualitative (non-numerical) data. Through a combination of lectures, workshops, and practical activities, you will learn how to design and carry out your own research. By the end of the module you will know how to formulate an interesting research question; how to choose an appropriate method to investigate it; how to ensure that you collect good quality data; how to analyse and interpret your data; and how to present the results of your research. In the Easter vacation you'll go to Cumbria for a field-course that will provide you with excellent opportunities for studying a range of geographical and environmental issues such as flooding, low-carbon energy developments, spatial contrasts in economic development, and landscape management. During the field-course you will work in a small group to design a research project, including some practical data collection and analysis. The module is recommended if you intend to use social research methods in your independent dissertation project. In addition to gaining practical research skills, you will develop your ability to critically evaluate research studies that use social science methods. As well as benefiting your academic studies, these analytical and practical research skills are highly valued in many occupational sectors.

ENV-5036K

20

WEATHER APPLICATIONS WITH FIELDCOURSE

Weather is one of the most popular topics of conversation. But how, specifically, does it present risks and opportunities, to people, organisations and to the wider environment? In this module you will develop a clear understanding of these linkages and an evidence base to draw on in future roles in which weather is a factor. You'll learn how to confidently source a diverse range of real-time weather information and you'll practice analysing such data, leading subsequently to successful interpretation and effective communication, both written and in front of the camera. You'll see, first hand, how meteorology depends upon computer systems for the efficient sharing, processing and visualisation of weather information. Being taught by weather practitioners with long experience of providing weather services to users, you will get the inside track on what it's like to work in weather. Weather Forecasting is one central theme and application which will provide a focus for learning. How are forecasts made and delivered, who uses forecasts and what are their distinctive needs? Success in forecasting depends in part on a good physical understanding of atmospheric processes - through practical work, we'll study those processes and use real examples of weather systems and events to reinforce the learning. At the end of the module, through an embedded week-long Easter residential fieldcourse, you'll apply your enhanced process understanding and forecasting knowledge in a hands-on way to design and implement meteorological field experiments, testing hypotheses through the collection and interpretation of field data collected using weather sensors. You'll write up your choice of fieldcourse experiment for assessment, after first receiving informal feedback on a related poster presentation.

ENV-5010K

20

Students will select 40 - 60 credits from the following modules:

Students may not take two or more modules in the same timetable slot in the same semester.

Name Code Credits

AQUATIC BIOGEOCHEMISTRY

The Earth's terrestrial and marine water bodies support life and play a major role in regulating the planet's climate. This module will train you to make accurate measurements of the chemical composition of the aquatic environment. In lectures and in the lab you will explore important chemical interactions between life, fresh and marine waters and climate, looking at nutrient cycles, dissolved oxygen, trace metals, carbonate chemistry and chemical exchange with the atmosphere. Students taking this module are expected to be familiar with basic chemical concepts and molar concentration units. This module makes a good combination with Aquatic Ecology.

ENV-5039B

20

ATMOSPHERIC CHEMISTRY AND GLOBAL CHANGE

Atmospheric chemistry and global change are in the news. Stratospheric ozone depletion, acid rain, greenhouse gases, and global scale air pollution are among the most significant environmental problems of our age. Chemical composition and transformations underlie these issues, and drive many important atmospheric processes. This module covers the fundamental chemical principles and processes in the atmosphere, from the Earth's surface to the stratosphere, and considers current issues of atmospheric chemical change through a series of lectures, problem-solving classes, seminars, experimental and computing labs, as well as a field trip to UEA's own atmospheric observatory in Weybourne/North Norfolk.

ENV-5015A

20

CLIMATE CHANGE: SCIENCE AND POLICY

You will develop your skills and understanding in the integrated analysis of global climate change, using perspectives from both the natural sciences and the social sciences. You will gain a grounding in the basics of climate change science, impacts, adaptation, mitigation and their influence on and by policy decisions. This module also offers you a historical perspective on how climate policy has developed, culminating in the December 2015 Paris Agreement. Finally, it considers what will be required to meet the goal of the Paris Agreement to limit global warming to well below 2 #C above pre-industrial levels.

ENV-5003A

20

COMMUNITY, ECOSYSTEM AND MACRO-ECOLOGY

This module introduces you to major concepts and definitions in community ecology, macro-ecology and biogeography. You will use these to explore how communities are structured in relation to local-scale to regional-scale processes, how they function and respond to perturbations at different scales, and result in emergent macro- to global-scale patterns of biodiversity distribution. Throughout the module, there is an emphasis on the relevance of theory and fundamental science to understanding the current environmental and biodiversity crisis. Anthropogenic impacts on natural communities through land-use, species exploitation, non-native species, and climate change, are a recurrent theme underpinning the examples you will draw upon.

BIO-5014B

20

CONSTRUCTING HUMAN GEOGRAPHIES

How can human geographers help us understand and address pressing environmental and social problems? This is the central question of the module which affirms the distinctive value and relevance of work in contemporary human geography. Throughout you will explore a wide range of approaches to environmental and social problems in contemporary human geography. You'll gain a firm grounding in social constructivism which is underlying philosophy of these approaches. You'll also learn how to communicate insights from human geography to policy-makers and practitioners, and how to critically evaluate examples of human geographers' engagements with policy. You'll begin with the basics of social constructivism, learn why this approach is used by human geographers, and consider the value of this perspective. You'll then delve deeper, exploring the social construction of a different object or problem each week. Topics covered will include: nature, hazards, alternative economies, and social difference. By looking at what these human geography perspectives mean for real-world environmental and social problems you'll practice applying what you've learnt to current policy problems, and learn about how human geographers are making a difference to these issues. You'll learn through a mixture of lectures, workshops and self-directed study and you'll be assessed through a written policy brief and reflective report (100%).

ENV-5038A

20

ENVIRONMENTAL POLITICS AND POLICY MAKING

The most significant obstacles to problem solving are often political, not scientific or technological. This module examines the emergence and processes of environmental politics. It analyses these from different theoretical perspectives, particularly theories of power and public policy making. The module is focused on contemporary examples of politics and policy making at UK, EU and international levels. The module supports student-led learning by enabling you to select (and develop your own theoretical interpretations of) 'real world' examples of politics. Assessment will be via seminar presentations and a case study essay. The module assumes no prior knowledge of politics.

ENV-5002B

20

GEOGRAPHIES OF DEVELOPMENT

What is uneven development and why should we care about it? How did uneven development emerge, and what can we do about it? This module focuses on how geographers have engaged with these questions from different perspectives, including economic, environmental and social. You will explore how economic geographers (and geographical economists) have sought to explain the spatiality and unevenness of economic activity, including examining the evidence for 'natural advantage'. You will engage with geographical work on urban restructuring and environmental governance which have seen uneven development as a product of capitalism, and consider the influence of Marxist theory on geographical thought. You will also consider how both ordinary people and civil society have tried to address, contest and resist spatial difference and uneven development. Questions of scale emerge in various forms through the module, which demonstrates how understanding 'uneven development' is a fundamentally geographical endeavour by exploring some of the key geographies of development.

DEV-5010B

20

GEOMORPHOLOGY

Geomorphology is the scientific study of landforms and the processes that shape them, it underpins numerous subjects including: sedimentology, palaeoclimatology, biodiversity, ecosystem services, natural hazards and natural resources. In this module you will be introduced to different landforms and gain an understanding of the earth surface processes that create these landforms. Our approach will be both descriptive and quantitative, based on understanding erosional and depositional concepts, weathering and sediment transport and the evolution of landscapes. Drawing from our own research, the emphasis will be on local East Anglian field sites as case studies (with half and full day field trips) with key international examples, to illustrate and improve your understanding of glacial geomorphology, coastal geomorphology, ecogeomorphology and mountain/river/slope geomorphology with some arid geomorphology. You will learn about and apply the methods and different types of data and evidence used by geomorphologists (e.g., maps, imagery and field observations/measurements) to understand landform creation and evolution, gaining numerous transferrable skills.

ENV-5034A

20

GLOBAL TECTONICS

Processes in the Earth's interior exert a profound influence on all aspects of the Earth's system, and have done so throughout geological time. This module is designed for you to explore all aspects of those processes from the creation and destruction of tectonic plates to the structure of the Earth's interior and the distribution and dissipation of energy within it. This will include: the theory and mechanisms of plate tectonics, the generation of magma and volcanism; the mechanisms behind earthquakes. You will also cover the geological record of this activity, its evolution and impacts on the Earth.

ENV-5018A

20

HYDROLOGY AND HYDROGEOLOGY

Hydrology and hydrogeology are Earth Science subjects concerned with the assessment of the natural distribution of water in time and space and the evaluation of human impacts on the water. This module provides an introduction to geological controls on groundwater occurrence, aquifer characteristics, basic principles of groundwater flow, basic hydrochemistry, an introduction to catchment hydrology, hydrological data collection and analysis, runoff generation processes and the principles of rainfall-runoff modelling. Practical classes develop analytical skills in solving problems as well as field skills in pumping test analysis and stream gauging. A field excursion in Norfolk is also offered in this module.

ENV-5021A

20

LOW CARBON ENERGY: SCIENCE AND TECHNOLOGY

This module examines the principles of energy science and technologies including energy generation and conversion, such as renewables, bioenergy and batteries. It provides a systematic and integrated account of the issues in energy resources and conversion. This knowledge is used to make a rational analysis of energy availability, applications and selections from physical, technical and environmental considerations. It also provides students with the opportunity to explore the future of energy provision in greater depth.

ENV-5022B

20

METEOROLOGY I

The weather affects everyone and influences decisions that are made on a daily basis around the world. From whether to hang your washing out on a sunny afternoon, to which route a commercial aircraft takes as it travels across the ocean, weather plays a vital role. With that in mind, what actually causes the weather we experience? In this module you'll learn the fundamentals of the science of meteorology. You'll concentrate on the physical process that allow moisture and radiation to transfer through the atmosphere and how they ultimately influence our weather. The module contains both descriptive and mathematical treatments of radiation balance, thermodynamics, dynamics, boundary layers, weather systems and the water cycle. The module is assessed through a combination of one piece of coursework and an exam, and is designed in a way that allows those with either mathematical or descriptive abilities to do well, although a reasonable mathematical competence is essential, including basic understanding of differentiation and integration.

ENV-5008A

20

OCEAN CIRCULATION

This module gives you an understanding of the physical processes occurring in the basin-scale ocean environment. We will introduce and discuss large scale global ocean circulation, including gyres, boundary currents and the overturning circulation. Major themes include the interaction between ocean and atmosphere, and the forces which drive ocean circulation. You should be familiar with partial differentiation, integration, handling equations and using calculators. Shelf Sea Dynamics is a natural follow-on module and builds on some of the concepts introduced here. We strongly recommend that you also gain oceanographic fieldwork experience by taking the 20-credit biennial Marine Sciences field course.

ENV-5016A

20

PEOPLE AND PLACE

This module will develop your theoretical and empirical understanding of how social environments in different places affect people's health or ill-health. It is about the geographies of health. You will develop knowledge about how ill-health and health inequalities are linked to socio-economic inequalities, poverty and marginalisation. You will be able to apply this knowledge to questions of health policy and interventions designed to improve health. A key conceptual framework for this module is the social determinants of health (SDH). This includes analysis of the risk environment for ill-health, influenced by social structures (such as gender or class) in a particular setting, how people make a living (their livelihoods), environmental change and the nature of health policy and the health services available to people. We are therefore also interested in the interventions which can help deal with risk environments, to make people less susceptible to disease and less vulnerable when they become ill. You will learn how some places have achieved good health. The module is inter-disciplinary, drawing on theories and evidence from disciplines such as sociology, anthropology, public health and development studies, and to a lesser extent economics, demography and epidemiology. It also provides an understanding of the ways different cultures and societies define and understand health and ill-health and why some diseases are highly stigmatised. Case studies from different places and of different diseases are used to illustrate the social determinants of health, including infectious diseases (such as HIV, malaria, Ebola) and non-communicable diseases.

DEV-5011A

20

POPULATION ECOLOGY AND MANAGEMENT

We live in a human dominated era recently designated "the Anthropocene". Humans harvest more than half of the primary productivity of the planet, many resources are over-exploited or depleted (e.g. fisheries) never before it was so important to correctly manage natural resources for an exponentially growing human population. It is, thus, fundamental to predict where other species occur and the sizes of their populations (abundance). Population Ecology is an area dedicated to the dynamics of population development. In this module we will look closely at how populations are regulated, from within through density dependent factors and from external density independent factors. We start the module with a global environmental change perspective to the management of populations and the factors that affect the population size. We then extend these ideas to help us understand population properties and processes both intra-specifically and inter-specifically. Finally we examine several management applications where we show that a good understanding of the population modelling is essential to correctly manage natural resources on the planet. Practicals include learning to survey butterflies and birds using citizen science monitoring projects and will be focused on delivering statistical analyses of "Big data" using the programme R. The projects will provide a strong training in both subject specific and transferrable skills.

ENV-5014A

20

SEDIMENTOLOGY

Sediments and sedimentary rocks cover much of the Earth's surface, but how do they get there and what can they tell us? If you are a geologist or environmental scientist with particular interest in physical geography then this is a key issue that you need to think about. Sediments record the Earth's history of environmental change, a record that started 3.8 billion years ago. Sediments contain the fossil record and host many of the world's natural resources including water, hydrocarbons, and minerals. In this module you will discover how sedimentologists decode the wealth of information sediments contain, taught by two practicing sedimentologists who have international research reputations in their respective fields. This module includes the study of modern sediments in a range of environments including rivers, the continental shelf and deep ocean basins. We put particular emphasis on the physical and chemical processes that result in the deposition of different sediment types. We then use this basis to interpret the origin and processes that formed ancient sedimentary rocks. The module emphasises development of practical skills in the laboratory, and also in the field.

ENV-5035B

20

SHELF SEA DYNAMICS AND COASTAL PROCESSES

The shallow shelf seas that surround the continents are the oceans that we most interact with. They contribute a disproportionate amount to global marine primary production and CO2 drawdown into the ocean, and are important economically through commercial fisheries, offshore oil and gas exploration, and renewable energy developments (e.g. offshore wind farms). You will explore the physical processes that occur in shelf seas and coastal waters, their effect on biological, chemical and sedimentary processes, and how they can be harnessed to generate renewable energy. You will develop new skills during this module that will support careers in the offshore oil and gas industry, renewable energy industry, environmental consultancy, government laboratories (e.g. Cefas) and academia. The level of mathematical ability required to take this module is similar to Ocean Circulation and Meteorology I. You should be familiar with radians, rearranging equations and plotting functions.

ENV-5017B

20

SOIL PROCESSES AND ENVIRONMENTAL ISSUES

Through lectures, practical work, seminars and fieldwork, you'll explore the soil environment and the processes that occur within it. You'll gain an understanding of: basic soil components/properties; soil identification and classification; soil as a habitat; soil organisms; soil functions; the agricultural environment; soil-organism-agrochemical interaction; soil contamination; soil and climate change; soil ecosystem services and soil quality.

ENV-5012A

20

THE ORIGINS OF THE ENGLISH LANDSCAPE 4000BC TO 1066AD

We will study the development of the English landscape from early prehistoric times to the late Anglo Saxon period, and you will learn to identify and interpret key landscape features from the Neolithic, Bronze and Iron Ages before moving on to study Roman and Anglo Saxon landscapes. Lectures, seminars and field trips will provide you with an introduction to the approaches and sources used by landscape historians and landscape archaeologists. You will develop your understanding of landscape history through the study of key sites such as Stonehenge, Hadrian's Wall and Sutton Hoo. The chronological approach of the module will provide you with an understanding of long term landscape change, telling the story of the English landscape from prehistory to the eve of the Norman Conquest.

HIS-5002A

20

WEATHER APPLICATIONS

This module will build upon material covered in Meteorology I, by covering topics such as synoptic meteorology, weather hazards, micro-meteorology, further thermodynamics and weather forecasting. The module includes a major summative coursework assignment based on data collected on a UEA meteorology fieldcourse in a previous year.

ENV-5009B

20

Students must study the following modules for 40 credits:

Name Code Credits

INDEPENDENT PROJECT

With guidance from a supervisor, you will choose a topic, design the research and collect, analyse and interpret data. You will report on progress at various stages: in the selection of a topic, the detailed plan, an interim report and an oral presentation. A final report in the form of a dissertation not exceeding 10,000 words is required. When planning the project and again after completing the report, you will reflect on the range of subject-specific and generic skills acquired through your degree and how these are reinforced and complemented by skills acquired through your project. A final item of summative work assesses the clarity by which you communicate and evidences your range of skills in the form of a covering letter and cv for a potential job application. To further support the transition to employment you can present a formative research poster that summarises the main aspects of the work to prospective employers. This module is compulsory for all degree courses in the School of Environmental Sciences and is an independent piece of research.

ENV-6021A

40

Students will select 0 - 20 credits from the following modules:

Name Code Credits

GEOGRAPHY AND ENVIRONMENTAL SCIENCES FIELD COURSE TO SPAIN

This module seeks to promote a deeper understanding of the interactions between the natural environment and human society through field-based teaching and project work in Almeria, southern Spain. The region provides classic examples of landform evolution and arid environments, as well as experiencing major socio-economic changes in recent decades. Field activities will focus on such issues as agriculture, water resources, renewable energy and adaptation to climate change. Methods for evaluating the sustainability of developments will be examined. The module is assessed by an individual evidence report and public communication item. You will need to contribute 50% of the field course costs (the remainder is paid by the School). The precise cost will depend on the GBP to Euro exchange rate at the time bookings are made but a best estimate as of October 2017 is likely to be in the range GBP420 to GBP450. In addition, the field course will run only if a minimum number of 21 students enrol and commit to paying the student contribution. If interest exceeds the maximum number that the field centre can accommodate then priority will be given to students according to the number of possible prerequisite modules they have taken.

ENV-6030K

20

GEOSCIENCES FIELD COURSE TO SPAIN

During this field course you will develop a deeper understanding and integration of geoscience subjects through the development of field observation, recording and interpretation skills in areas of classic field geology. This fieldcourse is in the Almeria province of southern Spain where you will study a range of rock types sedimentary rocks to folded and metamorphic solid geology which form alpine belts. Your interpretive skills will include reading the rock record to unravel evidence for deep to shallow to marginal basin environments, with climatic and tectonic controls on the sedimentary fill of a basin. Also the evidence for strike-slip systems and associated sub-marine Miocene volcanism.

ENV-6029K

20

Students will select 60 - 80 credits from the following modules:

Students may not take two or more modules in the same timetable slot in the same semester.

Name Code Credits

BIODIVERSITY CONSERVATION AND HUMAN SOCIETY

l focus on the interactions between biodiversity and human societies. The module adopts a rigorous evidence-based approach. You will first critically examine the human drivers of biodiversity loss and the importance of biodiversity to human society, to understand how underlying perspectives and motivations influence approaches to conservation. You will then examine conflicts between human society and conservation and how these potentially can be resolved, reviewing institutions and potential instruments for biodiversity conservation in both Europe and developing countries. Coursework is inter-disciplinary and will require you to evaluate and communicate the quality of evidence showing effectiveness of conservation interventions and approaches.

ENV-6006A

20

BIOLOGICAL OCEANOGRAPHY AND MARINE ECOLOGY

This module explores the evolution, biodiversity and ecology of bacteria, diatoms, coccolithophores and nitrogen fixers, and the physiology and distribution of zooplankton. Example ecosystems such as the Antarctic, mid ocean gyres and Eastern Boundary Upwelling Systems will be studied in detail and predictions of the impact of environmental change (increasing temperature, decreasing pH, decreasing oxygen, and changes in nutrient supply) on marine ecosystem dynamics will be examined. Biological oceanographic methods will be critically evaluated. The module will include a reading week in week 7 and a voluntary employability visit to the Centre for the Environment, Fisheries and Aquaculture Science (CEFAS). You are expected to have some background in biology, e.g. have taken a biology, ecology or biogeochemistry based second year module.

ENV-6005A

20

CATCHMENT WATER RESOURCES

In this module, you will adopt an integrated approach to studying surface water and groundwater resources in river basins. You will address the fundamental requirement for an interdisciplinary catchment-based approach to managing and protecting water resources that includes an understanding of land use and its management. The module content includes the design of catchment monitoring programmes, nutrient mass balance calculations, river restoration techniques, an overview of UK and European agri-environmental policy and approaches to assessing and mitigating catchment flooding.

ENV-6018B

20

CLIMATE SYSTEMS

What sets the mean global temperature of the world? Why are some parts of the world arid whilst others at the same latitudes are humid? This module aims to provide you with an understanding of the processes that determine why the Earth's climate (defined, for example, by temperature and moisture distribution) looks like it does, what the major circulation patterns and climate zones are and how they arise. You will study why the climate changes in time over different timescales, and how we use this knowledge to understand the climate systems of other planets. This module is aimed at you if you wish to further your knowledge of climate, or want a base for any future study of climate change, such as the Meteorology/Oceanography or Climate Change degrees.

ENV-6025B

20

ENERGY AND PEOPLE

Modern everyday life rests fundamentally on the availability of energy. Since the 1970s, however, serious concerns have been raised about the sustainability of current energy systems. Traditionally, these problems have been analysed (and solutions proposed) from within the engineering and physical sciences. Understanding, managing and attempting to solve energy problems, however, demands a thorough appreciation of how people, at a range of scales, engage with energy in the course of their daily lives. This is a critical challenge for the social sciences, and will be a core focus of this module. Through this module, you will discover and explore a range of social science perspectives on the inter-relationships between energy and people. You will learn how to apply these ideas to contemporary energy problems and use them to generate your own visions for a sustainable energy future. You'll also be given the chance to work as part of a team and to communicate your ideas through both written and oral presentation. You'll begin by tracing the history and development of energy intensive societies and everyday lives as a means of understanding how energy has emerged as a key sustainability problem. You'll then go into more depth around different theories of social and technical change before exploring how these can be used to critically analyse a range of people-based solutions to energy problems that are currently being tried and tested around the world. You'll learn through a combination of lectures and seminars involving interactive group projects, class debates, practical exercises and student-led learning. At the end of the module, you will have developed the knowledge, skills and experience necessary to allow you to apply theories of social and technical change to a range of real-world energy problems. You'll be able to develop and critically analyse your own (and already existing) visions of a sustainable energy future, and you'll be able to creatively communicate these ideas to a range of different audiences. Please note, this is a strongly social science based module and is not recommended for students without a strong grounding in social science thinking and principle.

ENV-6026B

20

ENVIRONMENTAL CONSULTANCY

You will learn how a business functions (part on-line learning, part seminars) and gain experience of working on an environmental project by acting as an environmental consultant for a project presented by a business. Through the project you will gain experience of working on a 'real-world' environment-related challenge, acting as an environmental consultant in a team, you will have the opportunity for discussion and feedback with the host organisation before submitting an individual business style report as your contribution to the consultancy exercise. Overall, the aim is for you to gain a taster of the post-graduate transition to working with an organisation and confidence of how your skills and attributes are transferable to graduate employment.

ENV-6031B

20

FOSSIL FUELS

You will be introduced to geological, economic and political aspects of fossil fuels (oil, natural gas and coal). These are used to discuss environmental concerns arising from the use of fossil fuels, and the potentially profound implications of future fuel scarcity on society. Some knowledge of Earth science and basic Chemistry will be expected.

ENV-6009A

20

GEOPHYSICAL HAZARDS

Geophysical hazards such as earthquakes, volcanic eruptions, tsunamis and landslides have significant environmental and societal impacts. This module focuses on the physical basis and analysis of each hazard, their global range of occurrence, probability of occurrence and their local and global impact. You will address matters such as hazard monitoring, modelling and assessment, and consider approaches towards risk mitigation and the reduction of vulnerability (individual and societal), with an emphasis on their practical implementation. Scenarios and probabilities of mega-disasters are also investigated. All the teaching faculty involved have practical experience of supplying professional advice on these hazards (and related risks) in addition to their own research involvement. A basic knowledge of physical science and of mathematics is assumed e.g. use of logs, exponentials, powers, cosines, rearrangement of equations.

ENV-6001B

20

NATURAL RESOURCES AND ENVIRONMENTAL ECONOMICS

Environmental economics provides a set of tools and principles which can be useful in understanding natural resource management issues. This module introduces you to key principles and tools of environmental economics for students who have not studied the subject previously. It then explores how these principles can be applied to address a number of complex economy-environment problems including climate change, over-fishing and water resources management. In this module you will have the opportunity to practically apply cost-benefit analysis as a framework for decision-making and will gain knowledge on the key non-market valuation techniques that are used to monetarily value environmental goods and services. At the end of the module you will have gained insights into how environmental economics is used in developing natural resource management policy as well as some of the challenges in using environmental economics in policy-making.

ENV-6012B

20

NEW GEOGRAPHIES OF THE ANTHROPOCENE

The onset of the Anthropocene, a geological epoch defined by the human shaping of Planet Earth, is seeing people starting to fundamentally rethink the human place in nature. What does this mean for the study of human geography? In this module you'll explore the debate over the onset of the Anthropocene, and the unique contribution that human geographers can make to it. You'll gain a firm grasp on how the idea of the Anthropocene is re-shaping geographical thought, and will encounter concepts and methods from across the field of human geography which can help us to think in new ways about the past, present and future of human-environment relationships. You'll also learn new skills in communicating geographical ideas and theories by written, oral and visual means. You'll begin with an introduction to the Anthropocene debate and to the different kinds of evidence that are drawn upon to define the character of this new age. You'll then range across the discipline, taking on-board ideas and insights from historical, political, social and cultural geography on the complex roots, meanings and politics of environmental change. Through a mixture of lectures, seminars, field classes and self-directed study, you'll explore what it means to be a geographer in a rapidly changing world. You'll develop a new appreciation of the processes shaping our environmental present, as well as the critical capacities needed to help shape our environmental future. Lectures cover topics such as Geopolitics as if the Earth Mattered, Cities in the Anthropocene, and Conservation at the end of Nature. As you study you'll put your new knowledge into practice, gaining experience in communicating your ideas in tutorials, group discussions, presentations and written work.

ENV-6032A

20

PALAEOCLIMATOLOGY

This module examines the geological evidence for climatic change through the Quaternary Period (the last 2.6 million years) and the longer-term evolution of climate through the Cenozoic Era (the last 65 million years). You will explore the interpretation and causal mechanisms behind these major global environmental changes using a diverse range of approaches - isotope geochemistry, sedimentology, palaeoecology and organic geochemistry. We will focus on the geochemical, biological and sedimentological information that can be obtained from marine sediments, ice cores, and terrestrial environments and use these records to reconstruct the timing extent and magnitude of selected climatic events in the geological record.

ENV-6017B

20

THE CARBON CYCLE AND CLIMATE CHANGE

What do you know about the drivers of climate change? Carbon dioxide (CO2) is the greenhouse gas that has, by far, the greatest impact on climate change, but how carbon cycles through the Earth is complex and not fully understood. Predicting future climate or defining 'dangerous' climate change is therefore challenging. In this module you will learn about the atmosphere, ocean and land components of the carbon cycle. We cover urgent global issues such as ocean acidification and how to get off our fossil fuel 'addiction', as well as how to deal with climate denialists.

ENV-6008A

20

URBAN GEOGRAPHIES

This module will examine the historical and contemporary development and governance of urban centres around the globe. In order to understand these processes, we will explore both the structure of human settlements and the multiple relationships and processes that shape and reshape urban spaces. We will examine the changing environmental, political, social, and economic dynamics of cities and smaller urban centres, drawing on case studies from the global north and the global south. The module will cover a range of concepts and topics which have preoccupied urban geographers, including but not limited to: urbanisation and urban growth patterns; urban economic restructuring and neoliberalism; urban infrastructure; poverty and inequality; informality; migration; citizenship; urban nature; and race and sexuality in the city. A one-day field trip focusing on urban planning and regeneration is an integral part of the module.

DEV-6010B

20

Students will select 0 - 20 credits from the following modules:

Students may not take two or more modules in the same timetable slot in the same semester.

Name Code Credits

AQUATIC BIOGEOCHEMISTRY

The Earth's terrestrial and marine water bodies support life and play a major role in regulating the planet's climate. This module will train you to make accurate measurements of the chemical composition of the aquatic environment. In lectures and in the lab you will explore important chemical interactions between life, fresh and marine waters and climate, looking at nutrient cycles, dissolved oxygen, trace metals, carbonate chemistry and chemical exchange with the atmosphere. Students taking this module are expected to be familiar with basic chemical concepts and molar concentration units. This module makes a good combination with Aquatic Ecology.

ENV-5039B

20

CLIMATE CHANGE: SCIENCE AND POLICY

You will develop your skills and understanding in the integrated analysis of global climate change, using perspectives from both the natural sciences and the social sciences. You will gain a grounding in the basics of climate change science, impacts, adaptation, mitigation and their influence on and by policy decisions. This module also offers you a historical perspective on how climate policy has developed, culminating in the December 2015 Paris Agreement. Finally, it considers what will be required to meet the goal of the Paris Agreement to limit global warming to well below 2 #C above pre-industrial levels.

ENV-5003A

20

COMMUNITY, ECOSYSTEM AND MACRO-ECOLOGY

This module introduces you to major concepts and definitions in community ecology, macro-ecology and biogeography. You will use these to explore how communities are structured in relation to local-scale to regional-scale processes, how they function and respond to perturbations at different scales, and result in emergent macro- to global-scale patterns of biodiversity distribution. Throughout the module, there is an emphasis on the relevance of theory and fundamental science to understanding the current environmental and biodiversity crisis. Anthropogenic impacts on natural communities through land-use, species exploitation, non-native species, and climate change, are a recurrent theme underpinning the examples you will draw upon.

BIO-5014B

20

CONSTRUCTING HUMAN GEOGRAPHIES

How can human geographers help us understand and address pressing environmental and social problems? This is the central question of the module which affirms the distinctive value and relevance of work in contemporary human geography. Throughout you will explore a wide range of approaches to environmental and social problems in contemporary human geography. You'll gain a firm grounding in social constructivism which is underlying philosophy of these approaches. You'll also learn how to communicate insights from human geography to policy-makers and practitioners, and how to critically evaluate examples of human geographers' engagements with policy. You'll begin with the basics of social constructivism, learn why this approach is used by human geographers, and consider the value of this perspective. You'll then delve deeper, exploring the social construction of a different object or problem each week. Topics covered will include: nature, hazards, alternative economies, and social difference. By looking at what these human geography perspectives mean for real-world environmental and social problems you'll practice applying what you've learnt to current policy problems, and learn about how human geographers are making a difference to these issues. You'll learn through a mixture of lectures, workshops and self-directed study and you'll be assessed through a written policy brief and reflective report (100%).

ENV-5038A

20

ENVIRONMENTAL POLITICS AND POLICY MAKING

The most significant obstacles to problem solving are often political, not scientific or technological. This module examines the emergence and processes of environmental politics. It analyses these from different theoretical perspectives, particularly theories of power and public policy making. The module is focused on contemporary examples of politics and policy making at UK, EU and international levels. The module supports student-led learning by enabling you to select (and develop your own theoretical interpretations of) 'real world' examples of politics. Assessment will be via seminar presentations and a case study essay. The module assumes no prior knowledge of politics.

ENV-5002B

20

GEOGRAPHIES OF DEVELOPMENT

What is uneven development and why should we care about it? How did uneven development emerge, and what can we do about it? This module focuses on how geographers have engaged with these questions from different perspectives, including economic, environmental and social. You will explore how economic geographers (and geographical economists) have sought to explain the spatiality and unevenness of economic activity, including examining the evidence for 'natural advantage'. You will engage with geographical work on urban restructuring and environmental governance which have seen uneven development as a product of capitalism, and consider the influence of Marxist theory on geographical thought. You will also consider how both ordinary people and civil society have tried to address, contest and resist spatial difference and uneven development. Questions of scale emerge in various forms through the module, which demonstrates how understanding 'uneven development' is a fundamentally geographical endeavour by exploring some of the key geographies of development.

DEV-5010B

20

GEOMORPHOLOGY

Geomorphology is the scientific study of landforms and the processes that shape them, it underpins numerous subjects including: sedimentology, palaeoclimatology, biodiversity, ecosystem services, natural hazards and natural resources. In this module you will be introduced to different landforms and gain an understanding of the earth surface processes that create these landforms. Our approach will be both descriptive and quantitative, based on understanding erosional and depositional concepts, weathering and sediment transport and the evolution of landscapes. Drawing from our own research, the emphasis will be on local East Anglian field sites as case studies (with half and full day field trips) with key international examples, to illustrate and improve your understanding of glacial geomorphology, coastal geomorphology, ecogeomorphology and mountain/river/slope geomorphology with some arid geomorphology. You will learn about and apply the methods and different types of data and evidence used by geomorphologists (e.g., maps, imagery and field observations/measurements) to understand landform creation and evolution, gaining numerous transferrable skills.

ENV-5034A

20

GLOBAL TECTONICS

Processes in the Earth's interior exert a profound influence on all aspects of the Earth's system, and have done so throughout geological time. This module is designed for you to explore all aspects of those processes from the creation and destruction of tectonic plates to the structure of the Earth's interior and the distribution and dissipation of energy within it. This will include: the theory and mechanisms of plate tectonics, the generation of magma and volcanism; the mechanisms behind earthquakes. You will also cover the geological record of this activity, its evolution and impacts on the Earth.

ENV-5018A

20

HYDROLOGY AND HYDROGEOLOGY

Hydrology and hydrogeology are Earth Science subjects concerned with the assessment of the natural distribution of water in time and space and the evaluation of human impacts on the water. This module provides an introduction to geological controls on groundwater occurrence, aquifer characteristics, basic principles of groundwater flow, basic hydrochemistry, an introduction to catchment hydrology, hydrological data collection and analysis, runoff generation processes and the principles of rainfall-runoff modelling. Practical classes develop analytical skills in solving problems as well as field skills in pumping test analysis and stream gauging. A field excursion in Norfolk is also offered in this module.

ENV-5021A

20

LOW CARBON ENERGY: SCIENCE AND TECHNOLOGY

This module examines the principles of energy science and technologies including energy generation and conversion, such as renewables, bioenergy and batteries. It provides a systematic and integrated account of the issues in energy resources and conversion. This knowledge is used to make a rational analysis of energy availability, applications and selections from physical, technical and environmental considerations. It also provides students with the opportunity to explore the future of energy provision in greater depth.

ENV-5022B

20

METEOROLOGY I

The weather affects everyone and influences decisions that are made on a daily basis around the world. From whether to hang your washing out on a sunny afternoon, to which route a commercial aircraft takes as it travels across the ocean, weather plays a vital role. With that in mind, what actually causes the weather we experience? In this module you'll learn the fundamentals of the science of meteorology. You'll concentrate on the physical process that allow moisture and radiation to transfer through the atmosphere and how they ultimately influence our weather. The module contains both descriptive and mathematical treatments of radiation balance, thermodynamics, dynamics, boundary layers, weather systems and the water cycle. The module is assessed through a combination of one piece of coursework and an exam, and is designed in a way that allows those with either mathematical or descriptive abilities to do well, although a reasonable mathematical competence is essential, including basic understanding of differentiation and integration.

ENV-5008A

20

OCEAN CIRCULATION

This module gives you an understanding of the physical processes occurring in the basin-scale ocean environment. We will introduce and discuss large scale global ocean circulation, including gyres, boundary currents and the overturning circulation. Major themes include the interaction between ocean and atmosphere, and the forces which drive ocean circulation. You should be familiar with partial differentiation, integration, handling equations and using calculators. Shelf Sea Dynamics is a natural follow-on module and builds on some of the concepts introduced here. We strongly recommend that you also gain oceanographic fieldwork experience by taking the 20-credit biennial Marine Sciences field course.

ENV-5016A

20

PEOPLE AND PLACE

This module will develop your theoretical and empirical understanding of how social environments in different places affect people's health or ill-health. It is about the geographies of health. You will develop knowledge about how ill-health and health inequalities are linked to socio-economic inequalities, poverty and marginalisation. You will be able to apply this knowledge to questions of health policy and interventions designed to improve health. A key conceptual framework for this module is the social determinants of health (SDH). This includes analysis of the risk environment for ill-health, influenced by social structures (such as gender or class) in a particular setting, how people make a living (their livelihoods), environmental change and the nature of health policy and the health services available to people. We are therefore also interested in the interventions which can help deal with risk environments, to make people less susceptible to disease and less vulnerable when they become ill. You will learn how some places have achieved good health. The module is inter-disciplinary, drawing on theories and evidence from disciplines such as sociology, anthropology, public health and development studies, and to a lesser extent economics, demography and epidemiology. It also provides an understanding of the ways different cultures and societies define and understand health and ill-health and why some diseases are highly stigmatised. Case studies from different places and of different diseases are used to illustrate the social determinants of health, including infectious diseases (such as HIV, malaria, Ebola) and non-communicable diseases.

DEV-5011A

20

POPULATION ECOLOGY AND MANAGEMENT

We live in a human dominated era recently designated "the Anthropocene". Humans harvest more than half of the primary productivity of the planet, many resources are over-exploited or depleted (e.g. fisheries) never before it was so important to correctly manage natural resources for an exponentially growing human population. It is, thus, fundamental to predict where other species occur and the sizes of their populations (abundance). Population Ecology is an area dedicated to the dynamics of population development. In this module we will look closely at how populations are regulated, from within through density dependent factors and from external density independent factors. We start the module with a global environmental change perspective to the management of populations and the factors that affect the population size. We then extend these ideas to help us understand population properties and processes both intra-specifically and inter-specifically. Finally we examine several management applications where we show that a good understanding of the population modelling is essential to correctly manage natural resources on the planet. Practicals include learning to survey butterflies and birds using citizen science monitoring projects and will be focused on delivering statistical analyses of "Big data" using the programme R. The projects will provide a strong training in both subject specific and transferrable skills.

ENV-5014A

20

SEDIMENTOLOGY

Sediments and sedimentary rocks cover much of the Earth's surface, but how do they get there and what can they tell us? If you are a geologist or environmental scientist with particular interest in physical geography then this is a key issue that you need to think about. Sediments record the Earth's history of environmental change, a record that started 3.8 billion years ago. Sediments contain the fossil record and host many of the world's natural resources including water, hydrocarbons, and minerals. In this module you will discover how sedimentologists decode the wealth of information sediments contain, taught by two practicing sedimentologists who have international research reputations in their respective fields. This module includes the study of modern sediments in a range of environments including rivers, the continental shelf and deep ocean basins. We put particular emphasis on the physical and chemical processes that result in the deposition of different sediment types. We then use this basis to interpret the origin and processes that formed ancient sedimentary rocks. The module emphasises development of practical skills in the laboratory, and also in the field.

ENV-5035B

20

SHELF SEA DYNAMICS AND COASTAL PROCESSES

The shallow shelf seas that surround the continents are the oceans that we most interact with. They contribute a disproportionate amount to global marine primary production and CO2 drawdown into the ocean, and are important economically through commercial fisheries, offshore oil and gas exploration, and renewable energy developments (e.g. offshore wind farms). You will explore the physical processes that occur in shelf seas and coastal waters, their effect on biological, chemical and sedimentary processes, and how they can be harnessed to generate renewable energy. You will develop new skills during this module that will support careers in the offshore oil and gas industry, renewable energy industry, environmental consultancy, government laboratories (e.g. Cefas) and academia. The level of mathematical ability required to take this module is similar to Ocean Circulation and Meteorology I. You should be familiar with radians, rearranging equations and plotting functions.

ENV-5017B

20

SOIL PROCESSES AND ENVIRONMENTAL ISSUES

Through lectures, practical work, seminars and fieldwork, you'll explore the soil environment and the processes that occur within it. You'll gain an understanding of: basic soil components/properties; soil identification and classification; soil as a habitat; soil organisms; soil functions; the agricultural environment; soil-organism-agrochemical interaction; soil contamination; soil and climate change; soil ecosystem services and soil quality.

ENV-5012A

20

THE ORIGINS OF THE ENGLISH LANDSCAPE 4000BC TO 1066AD

We will study the development of the English landscape from early prehistoric times to the late Anglo Saxon period, and you will learn to identify and interpret key landscape features from the Neolithic, Bronze and Iron Ages before moving on to study Roman and Anglo Saxon landscapes. Lectures, seminars and field trips will provide you with an introduction to the approaches and sources used by landscape historians and landscape archaeologists. You will develop your understanding of landscape history through the study of key sites such as Stonehenge, Hadrian's Wall and Sutton Hoo. The chronological approach of the module will provide you with an understanding of long term landscape change, telling the story of the English landscape from prehistory to the eve of the Norman Conquest.

HIS-5002A

20

WEATHER APPLICATIONS

This module will build upon material covered in Meteorology I, by covering topics such as synoptic meteorology, weather hazards, micro-meteorology, further thermodynamics and weather forecasting. The module includes a major summative coursework assignment based on data collected on a UEA meteorology fieldcourse in a previous year.

ENV-5009B

20

Disclaimer

Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. In some cases optional modules can have limited places available and so you may be asked to make additional module choices in the event you do not gain a place on your first choice. Where this is the case, the University will endeavour to inform students.

Further Reading

  • RGS IBG Accreditation

    “RGS accreditation is highly valued by graduate employers as well as by current and prospective students alike so we are really pleased that our degrees have been recognised.” Dr Gill Seyfang

    Read it RGS IBG Accreditation
  • celebrate 50 years

    Find out about the impact UEA has made over the past 50 years

    Read it celebrate 50 years
  • TOP 12 FACTS ABOUT THE SCHOOL

    Twelve things you need to know about the School of Environmental Sciences.

    Read it TOP 12 FACTS ABOUT THE SCHOOL
  • UNIVERSITY TASTER EVENTS

    Come to one of our taster events and experience university life for yourself. Book now

    Read it UNIVERSITY TASTER EVENTS
  • UEA Award

    Develop your skills, build a strong CV and focus your extra-curricular activities while studying with our employer-valued UEA award.

    Read it UEA Award
  • OUR STUDENTS

    Hear from our current Environmental Sciences students

    Read it OUR STUDENTS

Entry Requirements

  • A Level ABB to include Geography. Science A-levels must include a pass in the practical element.
  • International Baccalaureate 32 points including HL Geography at 5. If no GCSE equivalent is held, offer will include Mathematics and English requirements.
  • Scottish Highers Only accepted in combination with Scottish Advanced Highers.
  • Scottish Advanced Highers BCC to include Geography. A combination of Advanced Highers and Highers may be acceptable.
  • Irish Leaving Certificate AABBBB or 2 subjects at H1, 4 at H2, including Higher Level Geography.
  • Access Course Pass the Access to HE Diploma with Distinction in 30 credits at Level 3 and Merit in 15 credits at Level 3, including 12 Level 3 credits in Geography.
  • BTEC DDM in a relevant subject area including 6 units of Geography. BTEC Public Services is not accepted. BTEC and A-level combinations are considered - please contact us.
  • European Baccalaureate 75% overall, including at least 70% in Geography.

Entry Requirement

GCSE Requirements:  GCSE English Language grade 4 and GCSE Mathematics grade 4 or GCSE English Language grade C and GCSE Mathematics grade C.  (N.B. please change grades as required)

General Studies and Critical Thinking are not accepted.  

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including speaking, listening, reading and writing) at the following level:

IELTS: 6.5 overall (minimum 6.0 in any component)

We will also accept a number of other English language qualifications. Review our English Language Equivalences here.

INTO University of East Anglia 

If you do not meet the academic and/or English language requirements for this course, our partner INTO UEA offers guaranteed progression on to this undergraduate degree upon successful completion of a foundation programme:

International Foundation in Physical Sciences and Engineering

INTO UEA also offer a variety of English language programmes which are designed to help you develop the English skills necessary for successful undergraduate study:

Pre-sessional English at INTO UEA
English for University Study at INTO UEA

Interviews

The majority of candidates will not be called for an interview. However, for some students an interview will be requested. These are normally quite informal and generally cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year, believing that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and may wish to contact the appropriate Admissions Office directly to discuss this further.

Intakes

The School's annual intake is in September of each year.

Alternative Qualifications

We encourage you to apply if you have alternative qualifications equivalent to our stated entry requirements. Please contact us for further information.

Fees and Funding

Undergraduate University Fees and Financial Support

Tuition Fees

Information on tuition fees can be found here:

UK students

EU Students

Overseas Students

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. 

The University of East Anglia offers a range of Scholarships; please click the link for eligibility, details of how to apply and closing dates.

How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The system allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it must be sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The UCAS code name and number for the University of East Anglia is EANGL E14.

Further Information

If you would like to discuss your individual circumstances with the Admissions Service prior to applying please do contact us:

Undergraduate Admissions Service
Tel: +44 (0)1603 591515
Email: admissions@uea.ac.uk

Please click here to register your details via our Online Enquiry Form.

International candidates are also actively encouraged to access the University's International section of our website.

    Next Steps

    We can’t wait to hear from you. Just pop any questions about this course into the form below and our enquiries team will answer as soon as they can.

    Admissions enquiries:
    admissions@uea.ac.uk or
    telephone +44 (0)1603 591515