BSc Environmental Sciences

Our Environmental Sciences degree gives you a deep insight into the natural workings of the environment, and how it interacts with us as inhabitants of it. Since it’s a broad-based degree, you’ll be introduced to the fundamentals of scientific analysis, whilst having the flexibility to focus on a variety of themes.

Our vast research expertise ensures we can provide world-class teaching on a huge range of topics. In fact, we’re rated first in the UK for the impact of our research (REF 2014), demonstrating the crucial role we play in influencing both the wider scientific community and environmental policy makers.

You’ll study a number of multidisciplinary modules from across the sciences in your first year, before tailoring the course to your own interests through optional modules and research projects. You’ll also have the opportunity to attend multiple field courses in diverse locations across the world.

Overview

Every person alive is profoundly influenced by their environment every day, but how well do you understand your environment and how it is affecting you? This degree programme provides you with the opportunity to understand how the components of the natural environment function and analyse the complicated social, political and cultural processes that impact upon it.

Our knowledge in this sphere is constantly evolving and the environmental science degree at UEA provides the opportunity to engage with experts at the forefront of this evolution. UEA houses the oldest and largest school of environmental sciences in the UK with specialists that span atmospheric, oceanographic, geological, social and ecological disciplines. Studying Environmental Sciences at UEA will enable you to learn from experts who have contributed to the Intergovernmental Panel on Climate Change and access world class facilities such as the Weybourne Atmospheric Laboratory.

Throughout this three year course you will acquire a wide range of skills, enabling you to apply the most rigorous scientific analyses to current problems caused by the way in which mankind is changing our environment at a greater rate than ever before.

This course is accredited by the Institution of Environmental Sciences. Students will be eligible for Associate Membership of the IES upon graduation, with the opportunity of achieving Chartered Environmentalist (CEnv) or Chartered Scientist (CSci) status.

 

 

By studying Environmental Sciences at UEA you will find out the answers to these questions and many more:

  • What is the geological evidence for climate change?
  • How has the Earth changed over the last 2.5 million years?
  • How does pollution affect human health and well-being?
  • How are international environmental treaties formed?
  • How can we reduce our energy consumption in the western world?
  • What happens inside an erupting volcano?

This degree programme is accredited by the Institution of Environmental Sciences. Upon graduating, you will be eligible for Associate Membership of the IES, with the opportunity to achieve Chartered Environmentalist (CEnv) or Chartered Scientist (CSci) status.

Field Course Options

Field courses and practical classes are an integral part of training our environmental science students. You will be introduced to many different geological environments, ecological habitats and learn a variety of practical techniques using specialist equipment through the wide range of field courses available.

Course Structure

This three year degree programme begins with a year of core compulsory modules to establish your knowledge on essential topics. You will have the chance to select from optional modules in the second and final years in order to allow you to direct your own studies. In the final year you will also have the opportunity to undertake an independent research project on a subject of your choice.

Year 1
A series of compulsory modules introduce you to the general scientific principles governing our environment, including Global Environmental Challenges and Understanding the Dynamic Planet. Multi-disciplinary modules from the wider Faculty of Science allow you to develop the essential analytical skills you will need during further years – including Maths for Scientists, Sustainability & Society and Field Skills.  

Year 2
As the course progresses you are given greater freedom to tailor your course around your own interests, choosing from a wide variety of modules, from Geodynamics to Hydrology. You will also undertake a free study module, giving you the chance to take a module from any school across the university, subject to permission. This gives you the opportunity to enhance your scientific skills with business acumen, or take a foreign language to improve your international employability.

Year 3
Your final year of study focuses on a substantial individual research project, allowing you to investigate a specialist area in professional depth. You will also study a range of advanced modules surrounding Environmental Science and its wider social context.

Assessment

A variety of assessment methods are used in different modules, ranging from 100% coursework to 100% examination. Coursework assessment methods include essays, written discussions, class tests, problem sheets, laboratory reports, field exercises, field notebooks and seminar presentations. In most modules the assessment is weighted 67% examination, 33% coursework. Skills based modules and field modules are assessed by 100% coursework.

Course Modules

Students must study the following modules for 80 credits:

Name Code Credits

GLOBAL ENVIRONMENTAL CHALLENGES

What are the most pressing environmental challenges facing the world today? How do we understand these problems through cutting-edge environmental science research? What are the possibilities for building sustainable solutions to address them in policy and society? In this module you will tackle these questions by taking an interdisciplinary approach to consider challenges relating to climate change, biodiversity, water resources, natural hazards, and technological risks. In doing so you will gain an insight into environmental science research 'in action' and develop essential academic study skills needed to explore these issues. Please note that ENV students, BIO Ecology students, NAT SCI students and SCI Foundation Year students can request a place on this module, however priority will be given to ENV students. Please note that non-ENV students wishing to select this module must obtain a signature from their advisor confirming that he/she will agree to mark the independent essay component of the module assessment in the spring semester (this must be done within the first two weeks of the autumn semester by sending an email to the module organiser (Dr. Mark Chapman) copied to the HUB at: env_ug.hub@uea.ac.uk ).

ENV-4001A

20

RESEARCH AND FIELD SKILLS

This module year long module introduces a range of transferable skills, tools and data resources that are widely used in research across the Environmental Sciences. The aim is to provide a broad understanding of the research process by undertaking different activities that involve i) formulating research questions, ii) collecting data using appropriate sources and techniques, iii) collating and evaluating information and iv) presenting results. The module will include the use of digital mapping technologies (such as geographical information systems GIS) and a 6 day residential field course held during the Easter Break.

ENV-4004Y

20

SUSTAINABILITY, SOCIETY AND BIODIVERSITY

Striking a balance between societal development, economic growth and environmental protection has proven challenging and oftentimes contentious. The concepts of `sustainability' and `sustainable development' have been coined to denote processed aiming to achieve this balance. Yet this has been hampered by contestation and ambiguity surrounding these concepts. This module introduces sustainable development, and examines why sustainability is so difficult to achieve, bringing together social and ecological perspectives. This module considers sustainability in theory and practice by examining the relationships between environment and society, through the contributions of a variety of social science disciplines. It also explores sustainability from an ecological perspective, introducing a range of concepts relevant to the structure and functioning of the biosphere and topics ranging from landscape and population ecology, to behavioural, physiological, molecular, genetic and chemical ecology. This module is assessed by coursework and an examination. TEACHING AND LEARNING A series of lectures in this module considers sustainability in theory and practice by examining the relationships between environment and society, drawing upon contributions from social science disciplines and perspectives (e.g. politics, health assessment, participation). These lectures, complemented by seminars and practicals introduce sustainable development, explore how interpretations have evolved over time, analyse how these are used by groups and interests in society, and examine the challenges of its implementation. These are followed by lectures which consider interactions between human societies and natural ecosystems, the anthropogenic impacts on biomes, ecosystems, communities, populations and the genetic diversity of individuals. The introduce approaches and ideas fundamental to modern quantitative conservation ecology. The practicals include an introduction to ecological communities, measuring ecological diversity, elementary statistical analysis, field exercises involving terrestrial environments and field trip to a nature reserve to examine relationships between landscape management and/or one or more approaches to measuring biological diversity. Self-directed reading provides opportunities for the students on this module to explore and reflect on these and other aspects in more detail. This module is intended to give you a flavour of the issues, themes and considerations relating to biodiversity, ecosystem services and human development. It does not require in-depth prior knowledge of social sciences, biology chemistry or physics.

ENV-4006B

20

UNDERSTANDING THE DYNAMIC PLANET

Understanding of natural systems is underpinned by physical laws and processes. This module explores energy, mechanics, physical properties of Earth materials and their relevance to environmental science using examples from across the Earth's differing systems. The formation, subsequent evolution and current state of our planet are considered through its structure and behaviour#from the planetary interior to the dynamic surface and into the atmosphere. Plate Tectonics is studied to explain Earth's physiographic features#such as mountain belts and volcanoes#and how the processes of erosion and deposition modify them. The distribution of land masses is tied to global patterns of rock, ice and soil distribution and to atmospheric and ocean circulation. We also explore geological time#the 4.6 billion year record of changing conditions on the planet and introduce geological materials, resources and hazards.

ENV-4005A

20

Students will select 20 credits from the following modules:

Students will be assigned to 20 credits from the following units. Assignments will be made according to previous Maths qualifications.

Name Code Credits

ADVANCED QUANTITATIVE SKILLS

THIS MODULE CANNOT BE TAKEN WITH ENV-4015Y or ENV-4013Y. This module is designed for students who have mathematics at GCSE grade A, AS level (grade E or above), A2 level (grade D or E) or IB SL (grade 2 or 3). This module is also for students transferring from the SCI Foundation year who took CHE-0006B Further Foundation Mathematics instead of MTHB0002B Basic Mathematics II. This module will consolidate GCSE level mathematics and develop your quantitative skills further in order to broaden the range of quantitative Environmental Science modules you are able to take at Level 5 and 6. It will also cover the most important statistical methods that you will need during the rest of your career in ENV, including ways of summarising data using both numerical summaries and graphs, testing hypotheses and carrying out these analyses on computers. An important part of this module is applying these quantitative skills to applied environmental and geographical problems. This module is assessed by formative assessment and course test / examination.

ENV-4014Y

20

MATHEMATICS FOR SCIENTISTS A

THIS MODULE CANNOT BE TAKEN WITH ENV-4014Y OR ENV-4013Y. This module is designed for students with maths A2 level (grade C or above) or IB SL (grade 4 or above). It is also for students transferring from the SCI Foundation year who have taken MTHB0002B Basic Mathematics II. It covers differentiation, integration, vectors, partial differentiation, ordinary differential equations, further integrals, power series expansions, complex numbers and statistical methods. In addition to the theoretical background there is an emphasis on applied examples. Previous knowledge of calculus is assumed. This module is the first in a series of three maths modules for students across the Faculty of Science that provide a solid undergraduate mathematical training. The follow-on modules are Mathematics for Scientists B and C.

ENV-4015Y

20

QUANTITATIVE SKILLS

THIS MODULE CANNOT BE TAKEN WITH ENV-4015Y OR ENV-4014Y. This module is about revising GCSE level mathematics and learning how to apply these skills to solving applied environmental science and geographical problems. It is designed for students who have a GCSE in maths at grade B or C, but no AS or A2 qualification. It will cover essential mathematics (algebra, indices and scientific notation, manipulating and solving equations, units, reading graphs, logs, exponentials, trigonometrical functions, concept of rate of change). It will also cover the most important statistical methods that you will need during the rest of your career in ENV, including ways of summarising data using both numerical summaries and graphs, testing hypotheses and carrying out these analyses on computers. An important part of this module is applying these quantitative skills to environmental and geographical problems. This module is assessed by formative assessment and course test / examination.

ENV-4013Y

20

Students will select 20 credits from the following modules:

Students will be assigned to 20 credits from the following units. Assignments will be made according to previous Chemistry qualifications.

Name Code Credits

PHYSICAL AND CHEMICAL PROCESSES IN THE EARTH'S SYSTEM I

The habitability of planet Earth depends on the physical and chemical systems on the planet which control everything from the weather and clim ate to the growth of all living organisms. This module aims to introduce you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret these systems. The module will lead many of you on to second and third year courses (and beyond) studying these systems in more detail, but even for those of you who choose to study other aspects of environmental sciences a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The course has two distinct components, one on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) and one on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). During the course of the module the teachers will also emphasise the inter-relationships between these two sections This course is taught in two variants: In 4007B (described here) we will provide a Basic Chemistry introduction for those students who have little or no background in chemistry before coming to UEA (see pre-requisites). If you have previous experience of chemistry you will take ENV 4008B. This course will run throughout semester 2 involving a mixture of lectures, laboratory practical classes, workshops and a half day field trip.

ENV-4007B

20

PHYSICAL AND CHEMICAL PROCESSES IN THE EARTH'S SYSTEM II

The habitability of planet Earth depends on the physical and chemical systems on the planet which control everything from the weather and climate to the growth of all living organisms. This module aims to introduce you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret these systems. The module will lead many of you on to second and third year courses (and beyond) studying these systems in more detail, but even for those of you who choose to study other aspects of environmental sciences a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The course has two distinct components, one on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) and one on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). During the course of the module the teachers will also emphasise the inter-relationships between these two sections This course is taught in two variants. The version of the course described here (4008B) is for students with previous experience of chemistry. Students with no previous experience of chemistry will take ENV 4007B (see pre-requisites). This course will run throughout semester 2 involving a mixture of lectures, laboratory practical classes, workshops and a half day field trip.

ENV-4008B

20

Students will select 20 - 40 credits from the following modules:

Students will select 20-40 credits from the following modules, which have been selected to provide appropriate skills for a related independent project. Students may not take two modules in the same timetable slot in the same semester (the modules are also listed in other Options Ranges alongside others in the same slot). Also note that students must submit a request to the School for a place on field courses.

Name Code Credits

APPLIED GEOPHYSICS

What lies beneath our feet? This module addresses this question by exploring how wavefields and potential fields are used in geophysics to image the subsurface on scales of metres to kilometres. The basic theory, data acquisition and interpretation methods of seismic, electrical, gravity and magnetic surveys are studied. A wide range of applications is covered including archaeological geophysics, energy resources and geohazards. This module is highly valued by employers in industry; guest industrial lecturers will cover the current 'state-of-the-art' applications in real world situations. Students doing this module are normally expected to have a good mathematical ability, notably in calculus and algebra before taking this module (ENV-4002Y Mathematics for Scientists A or equivalent).

ENV-5004B

20

APPLIED GEOPHYSICS WITH FIELDCOURSE

What lies beneath our feet? This module addresses this question by exploring how waves, rays and the various physical techniques are used in geophysics to image the subsurface on scales of meters to kilometres. The basic theory and interpretation methods of seismic, electrical and gravity and magnetic surveys are studied. A wide range of applications is covered including archaeological geophysics, energy resources and geohazards. The fieldcourse provides "hands-on" experience of the various techniques and applications, adding on valuable practical skills. This module is highly valued by employers in industry; guest industrial lecturers will cover the current 'state-of-the-art' applications in real world situations. Students doing this module are normally expected to have a good mathematical ability, notably in calculus and algebra before taking this module (ENV-4002Y Mathematics for Scientists A or equivalent). RESIDENTIAL FIELDCOURSE: There will be a charge for attending this field course. The charge is heavily subsidised by the School, but students enrolling must understand that they will commit to paying a sum to cover attendance. As the details of many modules and field courses have changed recently. The following figures should be viewed as ball-park estimates only. If you would like firmer data please consult the module organiser closer to the field course. The cost to the student will be on the order of GBP150.

ENV-5005K

20

AQUATIC ECOLOGY

An analysis of how chemical, physical and biological influences shape the biological communities of rivers, lakes and estuaries in temperate and tropical regions. There is an important practical component to this module that includes laboratory work and three field visits. The first piece of course work involves statistical analysis of class data. The module can be taken alongside hydrology or geochemical modules, it fits well with other ecology modules and can fit well with modules in development studies. Pre-requisite requirements are: An A-level in a biological subject, a biologically biased access course or any 1st year ecology module in ENV or BIO. Students must have a background in basic statistical analysis of data. Lectures will show how the chemical and physical features of freshwaters influence their biological communities. Students may attend video screenings that complement lectures with examples of aquatic habitats in the tropics. To do well in this module, students need to show that they can use primary literature to illustrate or contradict ideas introduced in lectures: There will be one formal session that shows how to do this. Practical work is an important part of this Module and is an opportunity to develop skills in taxonomy mainly using microscopes, chemical analysis of freshwaters, field observation, working in small groups, mini-lecture presentation, writing a research proposal and statistical analysis of ecological data. If interested in a career in ecology, the usual route is via a higher degree (Masters or PhD), for which a first or 2:1 is needed. This might lead into research or management work, either in an academically orientated environment or in industry. An alternative path is via casual or voluntary work leading ultimately into conservation or management, but bear in mind that many committed and keen people follow the same route and competition for permanent and paid jobs can be intense. There are also opportunities to enter relevant employment directly after graduation. The Environment Agency, which is responsible for the management, monitoring and legal regulation of many aspects of freshwater, estuaries and coastal waters, is a potential employer. Consulting engineers and many multinational companies have environmental departments that tackle aquatic projects. For this type of work, students might combine ecological modules with management options, or with more physical sciences such as soils, hydrology, hydrogeology, water resources, oceanography and environmental chemistry. Careers in international development on the natural resources side may also benefit from a background in freshwater science.

ENV-5001A

20

EARTH SCIENCE LAB SKILLS

Good observational and descriptive skills lie at the heart of many areas of Environmental Science. This module is designed to develop those and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects in this area. The module will include: observing, describing and recording the characteristics of geological materials (hand specimen and under microscope); measuring and representing 3d data, and reading geological maps. This module may be taken by Environmental Earth Science undergraduate students who for any reason cannot take ENV-5030B Earth Science Skills , and by students taking related degrees with a large component of Earth. Assessment includes a laboratory test and a practical project. The practical project will build on the skills learned in the first part of the module and other skills including time management. TEACHING AND LEARNING The first part will be taught predominately by laboratory and tutorial classes with directed learning exercise. This part will be co-taught with the first part of module ENV-5030B Earth Science Skills. The second part of the module will involve studying data and/or material supplied to the student and preparing a report. This will require students to practice good time management, some of the laboratory and analysis skills and presentation skills in addition to description and interpretation. COURSE CONTENT The topics will include: Observing, describing and recording the characteristics of geological materials; Introduction to mineralogy using microscopes; Grain size and character; Sediments and sedimentary petrology; One, two and three dimensional data; Basic geological maps; Representing and manipulating geological data in 3d space. CAREER PROSPECTS The basic geological skills of description, data manipulation and geological material identification learned in this module are what employers of Earth science graduates (and students with related degrees) would expect them to have. It is also useful for those embarking on teaching careers in Earth Science, geography or environmental sciences.

ENV-5029B

20

EARTH SCIENCE SKILLS

The module includes a week-long residential field work in the Easter vacation. Students who for whatever reason cannot undertake a week-long field course in the Easter break should take ENV-5029B. Good observational and descriptive skills lie at the heart of many areas of Environmental Science. This module is designed to develop those and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects in this area. The module will include: observing, describing and recording the characteristics of geological materials (in the field, in hand specimen and under microscope); measuring and representing 3d data, reading geological maps and basic geological mapping. This module is strongly recommended for Environmental Earth Science students and it is required for the Geological Society accreditation pathway of Earth Sciences degrees. It will also be of use to students taking related degrees with a large component of Earth science. Assessment is coursework only and will include a laboratory test and work undertaken during fieldwork. The field work builds on the skills learned in the lab-based first part of the module. If you have any worries, financial or physical about being able to undertake fieldwork you should discuss your worries with the field course leader before registering on this module. If you are unable to do a week long field course in the Easter vacation please consider taking ENV-5029B instead of this module. TEACHING AND LEARNING The first part will be taught predominately in laboratory classes and by self-study exercises. This part will be co-taught with the first part of module ENV-5029B Earth Science Laboratory Skills. Students will improve their observation, recording and description skills. They will learn methods of manipulating and presenting 3d data, learn some geological map skills and become aware of a range of geological laboratory techniques. The second part is a residential week-long field course and concentrates on Earth science field observation, description and interpretation. During this residential course students will develop a field skill-set, which is designed for students planning an independent project requiring Earth science field skills. The primary focus will be on geological mapping, structure and stratigraphy, but may include hydrogeological, geochemical and Quaternary techniques depending on field location and staff availability. The location of the field course is likely to be North Wales. COURSE CONTENT The module will include: Observing, describing and recording the characteristics of geological materials; Introduction to mineralogy using microscopes; Grain size and character; Sediments and sedimentary petrology; One, two and three dimensional data; geological maps; Representing and manipulating geological data in 3d space. CAREER PROSPECTS The basic geological skills of description, data manipulation and geological material identification learned in this module are what employers of Earth science graduates (and students with related degrees) would expect them to have. For this reason it is a compulsory part of the pathway through the Environmental Earth Sciences degree programmes accredited by the Geological Society.

ENV-5030B

20

ENVIRONMENTAL ANALYTICAL CHEMISTRY

This module is designed to teach skills necessary for the acquisition of good quality chemical data in environmental systems, and in the interpretation of this data. The module will focus on the collection of environmental samples for chemical analysis, methods of chemical analysis and the analytical and mathematical techniques used for data quality control. There will be a large component of practical work. This module will be particularly relevant for those wishing to do a chemistry-related project later in their degree. TEACHING AND LEARNING The module is structured around practical classes which will focus on the planning and implementation of field sampling, the preparation, storage and chemical analysis of environmental samples and the subsequent interpretation of the data acquired. Lectures will be used to provide supporting information for this exercise and more general information on broader aspects of analytical chemistry not covered in the practical classes. During the first half of the module, practical work will be based around analysis of samples collected by the class from UEA Broad and the River Yare. The second half of the module will be an independent study (mini-project) exercise, in which small groups will conduct more detailed investigations of the chemistry of the natural water bodies around UEA campus. There will be weekly non-assessed feedback on laboratory results during the module and a feed-forward formative assessment associated with mini-project topic selection. COURSE CONTENT: The module will cover field sampling strategies and techniques for preparing and storing chemical samples. There will be a strong focus on laboratory chemical analysis and on the mathematical manipulation of raw laboratory results, including quality control of data and critical comparison of results obtained using different methods. Interpretation of chemical data in its environmental context will also be covered. CAREER PROSPECTS The skills taught in this module have direct relevance to careers involving chemical analysis, with potential employers including the Environment Agency, environmental consultancies and research organizations (including postgraduate degree programmes). The broader skills associated with the use of critical analysis and independent and group work are widely valued in a wide range of professions.

ENV-5027B

20

FIELD ECOLOGY

Students explore the ecology of moorlands, bogs, sand dunes, rocky shores, estuaries and woodlands. Students should develop skills in identifying plants and animals using scientific keys, carrying out quantitative surveys and statistically analysing their data. Strong emphasis is placed on student-lead project work. The bulk of the teaching takes place on a two week field course in Western Ireland, that runs immediately before the start of the Autumn Semester.

BIO-5013A

20

GIS SKILLS FOR PROJECT WORK

This module builds upon the introduction to the use of GIS provided in the first year Research and Field Skills module (ENV-4004Y), focusing on how students can obtain their own data (both from a wide range of online sources and in the field), integrate it together and then undertake analysis and presentation tasks. Such skills are particularly important for the final year projects (ENV-6021A) undertaken by many students. Skills in GIS are also valued by many prospective employers across public, private and non-profit sectors, and also for further study at MSc or PhD level. The module will review the different techniques that can be used to create and edit data in a GIS, as well as existing digital databases (both UK and global) from which map data can be extracted and downloaded. ESRI ArcGIS will be the main software used, but there will also be an introduction to open source tools such as QGIS. The module will emphasize issues of data quality (e.g. uncertainty and accuracy) as they apply to spatial data and introduce the use of scripting tools (e.g. Python) as a way of documenting and efficiently repeating more complex analysis procedures. To make links with project work and employability there will also be case studies of GIS use in the workplace. Teaching will consist of a one-hour lectures and a three-hour practical class each week. The lectures will cover key concepts, data sources and techniques in GIS, with a particular emphasis on environmental applications. These will be reinforced by practical exercises mainly using the ArcGIS software. Students should expect to spend a significant amount of time outside of scheduled classes on their formative and summative coursework.

ENV-5028B

20

MARINE SCIENCES FIELDCOURSE

This 11 day 20 credit field course studies physical, chemical and biological coastal oceanographic processes and will probably take place in June. The course includes lectures and practical experience of oceanographic instrumentation, chartwork, numerical analysis of data using matlab and a poster presentation at ENV. The second week of the course will take place in Oban, using the oceanographic research ships and laboratory facilities of the Dunstaffnage Marine Laboratory http://www.sams.ac.uk. The course has no pre- or co-requisites, however it will be of particular relevance to those who have studying ENV-5016A Ocean Circulation, ENV-5019A Chemical Oceanography and ENV-6055A Biological Oceanography and Marine Ecology. PLEASE NOTE THAT YOU CAN ONLY ENROL ONTO THIS MODULE VIA AN APPLICATION FORM FROM THE SCHOOL AND NOT VIA THE STANDARD MODULE ENROLMENT PROCESS. ALSO THE MODULE RUNS IN THE SUMMER PRIOR TO THE START OF THE ACADEMIC YEAR.

ENV-5020K

20

METEOROLOGY II WITH FIELDCOURSE

This module will build upon material covered in ENV-5008A (Meteorology I) by covering topics such as synoptic meteorology, micro-scale processes, the General Circulation and weather forecasting. The module also includes a week long Easter vacation residential fieldcourse, based in the Lake District, involving students in designing scientific experiments to quantify the effects of micro- and synoptic-scale weather and climate processes, focusing on lake, forest and mountain environments. RESIDENTIAL FIELD COURSE The additional Field Course runs during the first seven days of the Easter Vacation based at Hawkshead Youth Hostel in Cumbria. There will be a charge for attending this field course. The charge is heavily subsidized by the School, but students enrolling must understand that they will commit to paying a sum to cover attendance. As the details of many modules and field courses have changed recently the following figures should be viewed as ball-park estimates only. If you would like firmer data please consult the module organizer closer to the field course. The cost to the student will be in the order of GBP160.

ENV-5010K

20

POPULATION ECOLOGY AND MANAGEMENT

We live in a human dominated era recently designated "the Anthropocene". Humans harvest more than half of the primary productivity of the planet, many resources are over-exploited or depleted (e.g. fisheries) never before it was so important to correctly manage natural resources for an exponentially growing human population. It is, thus, fundamental to predict where other species occur and the sizes of their populations (abundance). Population Ecology it is an area dedicated to the dynamics of population development. In this module we will look closely at how populations are regulated, from within through density dependent factors and, from external density independent factors. We start the module with a global environmental change perspective to the management of populations and the factors that affect the population size. We then extend these ideas to help us understand population properties and processes both intra-specifically and inter-specifically. Finally we examine several management applications where we show that a good understanding of the population modelling is essential to correctly manage natural resources on the planet. Practicals will be based on statistical or modelling projects and will provide a strong training in both subject specific and transferrable skills.

ENV-5014A

20

SEDIMENTOLOGY

Sedimentary rocks cover much of the Earth's surface, record the Earth's history of environmental change, contain the fossil record and host many of the world's natural resources. This module includes the study of modern sediments such as sand, mud and carbonates and the processes that result in their deposition. Understanding of modern processes is used to interpret ancient sedimentary rocks, their stratigraphy and the sedimentary structures they contain. Topics will include: (1) sedimentary fluid dynamics; (2) modern and ancient sedimentary environments including rivers, coastal margins, shallow shelf seas and the deep ocean; (3) differences between siliciclastic and carbonate depositional systems, and (4) the interactions between organisms and sediments. This module replaces ENV-2A85/ENV-5011A.

ENV-5035B

20

SOCIAL RESEARCH SKILLS FOR GEOGRAPHERS AND ENVIRONMENTAL SCIENTISTS

The study of society and its relationship to the natural environment poses distinct research challenges and social science presents a range of approaches and methods with which to address these problems. This module provides an introduction to the theory and practice of social science research. It covers research design, sampling, data collection, data analysis and interpretation, and presentation of results. It is recommended for any student intending to carry out a social science-based research project.

ENV-5031B

20

SOCIAL RESEARCH SKILLS FOR GEOGRAPHERS AND ENVIRONMENTAL SCIENTISTS WITH FIELDCOURSE

The study of society and its relationship to the natural environment poses distinct research challenges and social science presents a range of approaches and methods with which to address these problems. The module provides an introduction to the theory and practice of social science research. This will cover different perspectives on research, developing a research question, research design, research ethics, sampling, data collection, data analysis and interpretation, and includes quantitative, qualitative and mixed-method approaches. The learning outcomes will be for students to be able to demonstrate: (i) Knowledge and critical understanding of relevant concepts and principles (ii) Ability to apply concepts and principles to the design of social science research (iii) Knowledge of some of the main methods of enquiry (iv) Ability to evaluate critically different approaches (v) Ability to present effectively a research proposal, both orally and in writing. The module will include a field course at Easter based in Keswick, an area which provides excellent opportunities for studying a range of geographical and environmental issues, including flooding, low-carbon energy developments, spatial contrasts in economic development and landscape management. The first part of the field course will consist of four days of faculty-organised activities where students will be able to practice questionnaire surveys, interviewing and other social research methods. During the final two days students will work in small groups to plan a research investigation from a list of pre-defined topics. Each group will present their research proposal on the final afternoon of the field course as a piece of formative assessment and the individual members will then write separate short reports on their proposal as their second item of summative assessment for the module. There will be an additional charge for students to attend the field course, though the cost is substantially reduced through financial support from ENV.

ENV-5036K

20

Students will select 0 - 40 credits from the following modules:

Students will select 0-40 credits: 0-20 in SEM1 and 0-20 in SEM2.

Name Code Credits

AQUATIC ECOLOGY

An analysis of how chemical, physical and biological influences shape the biological communities of rivers, lakes and estuaries in temperate and tropical regions. There is an important practical component to this module that includes laboratory work and three field visits. The first piece of course work involves statistical analysis of class data. The module can be taken alongside hydrology or geochemical modules, it fits well with other ecology modules and can fit well with modules in development studies. Pre-requisite requirements are: An A-level in a biological subject, a biologically biased access course or any 1st year ecology module in ENV or BIO. Students must have a background in basic statistical analysis of data. Lectures will show how the chemical and physical features of freshwaters influence their biological communities. Students may attend video screenings that complement lectures with examples of aquatic habitats in the tropics. To do well in this module, students need to show that they can use primary literature to illustrate or contradict ideas introduced in lectures: There will be one formal session that shows how to do this. Practical work is an important part of this Module and is an opportunity to develop skills in taxonomy mainly using microscopes, chemical analysis of freshwaters, field observation, working in small groups, mini-lecture presentation, writing a research proposal and statistical analysis of ecological data. If interested in a career in ecology, the usual route is via a higher degree (Masters or PhD), for which a first or 2:1 is needed. This might lead into research or management work, either in an academically orientated environment or in industry. An alternative path is via casual or voluntary work leading ultimately into conservation or management, but bear in mind that many committed and keen people follow the same route and competition for permanent and paid jobs can be intense. There are also opportunities to enter relevant employment directly after graduation. The Environment Agency, which is responsible for the management, monitoring and legal regulation of many aspects of freshwater, estuaries and coastal waters, is a potential employer. Consulting engineers and many multinational companies have environmental departments that tackle aquatic projects. For this type of work, students might combine ecological modules with management options, or with more physical sciences such as soils, hydrology, hydrogeology, water resources, oceanography and environmental chemistry. Careers in international development on the natural resources side may also benefit from a background in freshwater science.

ENV-5001A

20

COMMUNITY, ECOSYSTEM AND MACRO-ECOLOGY

This module introduces the major community concepts and definitions, before looking in some detail at community patterns and processes including: species interactions; energy flows and productivity; and the hierarchy of drivers influencing community assembly, structure and diversity. Progression through these topics culminates in a macro-ecological perspective on community patterns and biodiversity. Throughout the module, there is an emphasis on the relevance of ecological theory and the fundamental science to the current environmental and biodiversity crisis. Anthropogenic impacts on natural communities through land-use, non-native species and pathogens, and climate change, are a recurrent theme underpinning the examples we draw upon.

BIO-5014B

20

GEOMORPHOLOGY

Geomorphology is the scientific study of landforms and the processes that shape them. This module will provide an introduction to understanding a number of earth surface processes that lead to expression in landforms and soil evolution. The approach will be both descriptive and quantitative, based on understanding erosional and depositional concepts, weathering and sediment transport and the evolution of soils in landscape. The emphasis will be on local East Anglian field sites as case studies illustrating and explaining ecogeomorphology, coastal and glacial geomorphology, dovetailed with soil evolution. The geomorphological/landscape expression will be linked to an 'ecosystem service appreciation' in each key teaching block. Students will also be introduced to the methods and different types of evidence used by physical geographers and earth scientists (e.g., maps, imagery and field observations). This module is assessed by an essay/data analysis exercise and students will also be set formative assessments. This module provides a knowledge base of particular relevance to the semester 2 module ENV-5035B SEDIMENTOLOGY.

ENV-5034A

20

LOW CARBON ENERGY

This module will focus on the decarbonisation of energy supply and demand in a carbon constrained world. It will examine the role of energy efficiency and low carbon energy technologies, such as wind energy, solar energy, hydrogen and fuel cells, taking into consideration important current issues and sectors for application. This knowledge is used to support an analysis of future energy supply and demand that includes management, policy and technical aspects. This version of the module is assessed by formative assessment and coursework. This module replaces ENV-2A84. TEACHING AND LEARNING This module not only provides the framework for learning the key technical and management aspects of low carbon energy but also provides students with the opportunity to explore the future of energy provision in greater depth in the practical sessions. These include an energy tour, debates and smaller seminar group discussions on the practical applications of low carbon energy technologies and energy efficiency and the management of future energy demand. They will provide students with the opportunity to share their knowledge and opinions in this most important field. Students will be expected to supplement the lectures and other learning activities by undertaking self-directed reading of text books, the research literature and policy documents. COURSE CONTENT # Importance of low carbon energy in terms of climate change, resource limits, fuel poverty and energy security # Current energy use and trends # How energy is produced, distributed and managed in the UK # Economic analysis of low carbon technologies # Low carbon energy technologies: biomass, wind, solar, hydro, wave, tidal, etc. # UK sectoral energy management: domestic, transport and business # Hydrogen energy and fuel cells CAREER PROSPECTS Energy and carbon management, renewable energy development, energy supply industry, energy policy development, energy efficiency consultancy, sustainable transportation development.

ENV-5022B

20

OCEAN CIRCULATION

This module gives you an understanding of the physical processes occurring in the basin-scale ocean environment. We will introduce and discuss large scale global ocean circulation, including gyres, boundary currents and the overturning circulation. Major themes include the interaction between ocean and atmosphere, and the forces which drive ocean circulation. You should be familiar with partial differentiation, integration, handling equations and using calculators. ENV-5017B is a natural follow-on module and builds on some of the concepts introduced here. We strongly recommend that you also gain oceanographic fieldwork experience by taking the 20-credit biennial Marine Sciences fieldcourse.

ENV-5016A

20

SHELF SEA DYNAMICS AND COASTAL PROCESSES

The shallow shelf seas that surround the continents are the oceans that we most interact with. They contribute a disproportionate amount to global marine primary production and CO2 drawdown into the ocean, and are important economically through commercial fisheries, offshore oil and gas exploration, and renewable energy developments (e.g. offshore wind farms). This module explores the physical processes that occur in shelf seas and coastal waters, their effect on biological, chemical and sedimentary processes, and how they can be harnessed to generate renewable energy. Career development: New skills developed during this module will support careers in the offshore oil and gas industry, renewable energy industry, environmental consultancy, government laboratories (e.g. Cefas) and academia. Mathematical background: The level of mathematical ability required to take this module is similar to Ocean Circulation and Meteorology I. You should be familiar with radians, rearranging equations and plotting functions.

ENV-5017B

20

Students will select 0 - 80 credits from the following modules:

Students will select 0-80 credits: 0-40 in SEM1 and 0-40 in SEM2, noting that no more than one module with the same timetable slot (e.g. EE) can be taken in one semester.

Name Code Credits

ATMOSPHERIC CHEMISTRY AND GLOBAL CHANGE

Atmospheric chemistry and global change are in the news: stratospheric ozone depletion, acid rain, greenhouse gases, and global scale air pollution are among the most significant environmental problems of our age. Chemical composition and transformations underlie these issues, and drive many important atmospheric processes. This module covers the fundamental chemical principles and processes in the atmosphere from the Earth's surface to the stratosphere, and considers current issues of atmospheric chemical change through a series of lectures, problem-solving classes, seminars, experimental and computing labs and a field trip to UEA's own atmospheric observatory in Weybourne/North Norfolk. A solid background in chemistry, physics or maths is recommended.

ENV-5015A

20

GIS SKILLS FOR PROJECT WORK

This module builds upon the introduction to the use of GIS provided in the first year Research and Field Skills module (ENV-4004Y), focusing on how students can obtain their own data (both from a wide range of online sources and in the field), integrate it together and then undertake analysis and presentation tasks. Such skills are particularly important for the final year projects (ENV-6021A) undertaken by many students. Skills in GIS are also valued by many prospective employers across public, private and non-profit sectors, and also for further study at MSc or PhD level. The module will review the different techniques that can be used to create and edit data in a GIS, as well as existing digital databases (both UK and global) from which map data can be extracted and downloaded. ESRI ArcGIS will be the main software used, but there will also be an introduction to open source tools such as QGIS. The module will emphasize issues of data quality (e.g. uncertainty and accuracy) as they apply to spatial data and introduce the use of scripting tools (e.g. Python) as a way of documenting and efficiently repeating more complex analysis procedures. To make links with project work and employability there will also be case studies of GIS use in the workplace. Teaching will consist of a one-hour lectures and a three-hour practical class each week. The lectures will cover key concepts, data sources and techniques in GIS, with a particular emphasis on environmental applications. These will be reinforced by practical exercises mainly using the ArcGIS software. Students should expect to spend a significant amount of time outside of scheduled classes on their formative and summative coursework.

ENV-5028B

20

HYDROLOGY AND HYDROGEOLOGY

Hydrology and hydrogeology are Earth Science subjects concerned with the assessment of the natural distribution of water in time and space and the evaluation of human impacts on the distribution and quality of water. Knowledge of Hydrology and Hydrogeology is fundamental to the management of freshwater resources for the benefits of drinking water supply, food production and aquatic habitats. This module provides an introduction to geological controls on groundwater occurrence, aquifer characteristics (porosity and permeability), basic principles of groundwater flow, basis hydrochemistry, an introduction to catchment hydrology, hydrological data collection and analysis, runoff generation processes and the principles of rainfall-runoff and flood modelling. Practical classes develop analytical skills in solving hydrogeological and hydrological problems as well as field skills in pumping test analysis and stream gauging. A field excursion to the River Thurne catchment in Norfolk is also offered in this module. The module aims to equip students with the basic skills required to pursue careers in water resources engineering and management.equivalent mathematical skills. For example, an ability to work with common mathematical operations is essential such as the simple rearrangement of equations, and the ability to convert between varying units of length and volume. Basic differential equations will be presented for the description of groundwater flow.

ENV-5021A

20

MARINE BIOGEOCHEMISTRY

Life on Earth began in the oceans and the oceans continue to have a major influence on global ecosystems and climate. The chemical composition of seawater is fundamental to the existence of life in the oceans - it is the life support system on which marine productivity is based. Investigating the distribution of nutrients in the ocean allows us to understand the processes that control marine productivity and its impact on global climate, as well as the effect of anthropogenic over-supply of nutrients (eutrophication) on the natural system. Phytoplankton growth in the ocean produces gases that can influence atmospheric composition and climate. Anthropogenic emissions of CO2 to the atmosphere directly affect the marine carbon cycle and cause Ocean Acidification, which threatens to cause considerable harm to marine ecosystems. Direct intervention in the chemical composition of the ocean has been proposed by some as potential geo-engineering solutions to help mitigate the effects of global climate change. This module explores all of these major issues and demonstrates the central role that the oceans play in global biogeochemical cycles and the Earth System.

ENV-5019A

20

MATHEMATICS FOR SCIENTISTS B

This module is the second in a series of three mathematical modules for students across the Faculty of Science. It covers vector calculus (used in the study of vector fields in subjects such as fluid dynamics and electromagnetism), time series and spectral analysis (a highly adaptable and useful mathematical technique in many science fields, including data analysis), and fluid dynamics (which has applications to the circulation of the atmosphere, ocean, interior of the Earth, chemical engineering, and biology). There is a continuing emphasis on applied examples.

ENV-5006A

20

MATHEMATICS FOR SCIENTISTS C

This module is the third in a series of three mathematical units for students across the Faculty of Science. It covers matrix algebra and numerical methods (with applications to many multi-variable problems in science), second order partial differential equations (which govern the behaviour of diffusive, advective and wave-like systems), and solid mechanics (applications in geophysics, glaciology, and material science). There is a continuing emphasis on applied examples, and the use of numerical computing software (Matlab) is extended with a dedicated programming component. This module is taught by mathematicians with considerable expertise in the use of mathematics in the natural/environmental sciences and is largely designed to equip students with the tools necessary for advanced second and third level modules, particularly those in the physical sciences. Emphasis is placed on problem solving and there are three lectures a week accompanied by one seminar which focuses on the discussion of relevant problem sheets.

ENV-5007B

20

SEDIMENTOLOGY

Sedimentary rocks cover much of the Earth's surface, record the Earth's history of environmental change, contain the fossil record and host many of the world's natural resources. This module includes the study of modern sediments such as sand, mud and carbonates and the processes that result in their deposition. Understanding of modern processes is used to interpret ancient sedimentary rocks, their stratigraphy and the sedimentary structures they contain. Topics will include: (1) sedimentary fluid dynamics; (2) modern and ancient sedimentary environments including rivers, coastal margins, shallow shelf seas and the deep ocean; (3) differences between siliciclastic and carbonate depositional systems, and (4) the interactions between organisms and sediments. This module replaces ENV-2A85/ENV-5011A.

ENV-5035B

20

Students will select 0 - 60 credits from the following modules:

Students will select 0-60 credits IF BIO-5013A is included. If BIO-5013A is not included, students must select no more than 40 credits as follows: 20 credits in SEM1 and 20 credits in SEM2. Note that students must submit a request to the School for a place on field courses.

Name Code Credits

CLIMATE CHANGE: SCIENCE AND POLICY

This module develops skills and understanding in the integrated analysis of global climate change, using perspectives from both the natural sciences and the social sciences. It offers a historical perspective on how climate has influenced society, on how global climate change has developed as a scientific object of enquiry, and on the difficulties and controversies over policies and politics on this issue, culminating in the December 2015 Paris Agreement. The course gives grounding in the basics of climate change science, impacts, adaptation, mitigation and their influence on and by policy decisions. Finally, it considers what will be required to meet the goal of the Paris Agreement to limit global warming to well below 2 #C above pre-industrial levels.

ENV-5003A

20

EARTH SCIENCE LAB SKILLS

Good observational and descriptive skills lie at the heart of many areas of Environmental Science. This module is designed to develop those and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects in this area. The module will include: observing, describing and recording the characteristics of geological materials (hand specimen and under microscope); measuring and representing 3d data, and reading geological maps. This module may be taken by Environmental Earth Science undergraduate students who for any reason cannot take ENV-5030B Earth Science Skills , and by students taking related degrees with a large component of Earth. Assessment includes a laboratory test and a practical project. The practical project will build on the skills learned in the first part of the module and other skills including time management. TEACHING AND LEARNING The first part will be taught predominately by laboratory and tutorial classes with directed learning exercise. This part will be co-taught with the first part of module ENV-5030B Earth Science Skills. The second part of the module will involve studying data and/or material supplied to the student and preparing a report. This will require students to practice good time management, some of the laboratory and analysis skills and presentation skills in addition to description and interpretation. COURSE CONTENT The topics will include: Observing, describing and recording the characteristics of geological materials; Introduction to mineralogy using microscopes; Grain size and character; Sediments and sedimentary petrology; One, two and three dimensional data; Basic geological maps; Representing and manipulating geological data in 3d space. CAREER PROSPECTS The basic geological skills of description, data manipulation and geological material identification learned in this module are what employers of Earth science graduates (and students with related degrees) would expect them to have. It is also useful for those embarking on teaching careers in Earth Science, geography or environmental sciences.

ENV-5029B

20

EARTH SCIENCE SKILLS

The module includes a week-long residential field work in the Easter vacation. Students who for whatever reason cannot undertake a week-long field course in the Easter break should take ENV-5029B. Good observational and descriptive skills lie at the heart of many areas of Environmental Science. This module is designed to develop those and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects in this area. The module will include: observing, describing and recording the characteristics of geological materials (in the field, in hand specimen and under microscope); measuring and representing 3d data, reading geological maps and basic geological mapping. This module is strongly recommended for Environmental Earth Science students and it is required for the Geological Society accreditation pathway of Earth Sciences degrees. It will also be of use to students taking related degrees with a large component of Earth science. Assessment is coursework only and will include a laboratory test and work undertaken during fieldwork. The field work builds on the skills learned in the lab-based first part of the module. If you have any worries, financial or physical about being able to undertake fieldwork you should discuss your worries with the field course leader before registering on this module. If you are unable to do a week long field course in the Easter vacation please consider taking ENV-5029B instead of this module. TEACHING AND LEARNING The first part will be taught predominately in laboratory classes and by self-study exercises. This part will be co-taught with the first part of module ENV-5029B Earth Science Laboratory Skills. Students will improve their observation, recording and description skills. They will learn methods of manipulating and presenting 3d data, learn some geological map skills and become aware of a range of geological laboratory techniques. The second part is a residential week-long field course and concentrates on Earth science field observation, description and interpretation. During this residential course students will develop a field skill-set, which is designed for students planning an independent project requiring Earth science field skills. The primary focus will be on geological mapping, structure and stratigraphy, but may include hydrogeological, geochemical and Quaternary techniques depending on field location and staff availability. The location of the field course is likely to be North Wales. COURSE CONTENT The module will include: Observing, describing and recording the characteristics of geological materials; Introduction to mineralogy using microscopes; Grain size and character; Sediments and sedimentary petrology; One, two and three dimensional data; geological maps; Representing and manipulating geological data in 3d space. CAREER PROSPECTS The basic geological skills of description, data manipulation and geological material identification learned in this module are what employers of Earth science graduates (and students with related degrees) would expect them to have. For this reason it is a compulsory part of the pathway through the Environmental Earth Sciences degree programmes accredited by the Geological Society.

ENV-5030B

20

ENVIRONMENTAL ANALYTICAL CHEMISTRY

This module is designed to teach skills necessary for the acquisition of good quality chemical data in environmental systems, and in the interpretation of this data. The module will focus on the collection of environmental samples for chemical analysis, methods of chemical analysis and the analytical and mathematical techniques used for data quality control. There will be a large component of practical work. This module will be particularly relevant for those wishing to do a chemistry-related project later in their degree. TEACHING AND LEARNING The module is structured around practical classes which will focus on the planning and implementation of field sampling, the preparation, storage and chemical analysis of environmental samples and the subsequent interpretation of the data acquired. Lectures will be used to provide supporting information for this exercise and more general information on broader aspects of analytical chemistry not covered in the practical classes. During the first half of the module, practical work will be based around analysis of samples collected by the class from UEA Broad and the River Yare. The second half of the module will be an independent study (mini-project) exercise, in which small groups will conduct more detailed investigations of the chemistry of the natural water bodies around UEA campus. There will be weekly non-assessed feedback on laboratory results during the module and a feed-forward formative assessment associated with mini-project topic selection. COURSE CONTENT: The module will cover field sampling strategies and techniques for preparing and storing chemical samples. There will be a strong focus on laboratory chemical analysis and on the mathematical manipulation of raw laboratory results, including quality control of data and critical comparison of results obtained using different methods. Interpretation of chemical data in its environmental context will also be covered. CAREER PROSPECTS The skills taught in this module have direct relevance to careers involving chemical analysis, with potential employers including the Environment Agency, environmental consultancies and research organizations (including postgraduate degree programmes). The broader skills associated with the use of critical analysis and independent and group work are widely valued in a wide range of professions.

ENV-5027B

20

FIELD ECOLOGY

Students explore the ecology of moorlands, bogs, sand dunes, rocky shores, estuaries and woodlands. Students should develop skills in identifying plants and animals using scientific keys, carrying out quantitative surveys and statistically analysing their data. Strong emphasis is placed on student-lead project work. The bulk of the teaching takes place on a two week field course in Western Ireland, that runs immediately before the start of the Autumn Semester.

BIO-5013A

20

GLOBAL TECTONICS

Processes in the Earth's interior have exerted a profound influence on all aspects of the Earth's system through geological time. This module is designed to explore all aspects of those processes from the creation and destruction of tectonic plates to the structure of the Earth's interior and the distribution and dissipation of energy within it. This will include: the theory and mechanisms of plate tectonics, , the generation of magma and volcanism; the mechanisms behind earthquakes. The geological record of this activity, its evolution and impacts on the Earth will also be discussed. TEACHING AND LEARNING There will be 2 lectures and a 3-hour practical class each week for 11 weeks (there is a Reading Week in week 6). Lectures will introduce you to the full scale of plate tectonics, from the whole Earth to regional scale features at Earth surface with an emphasis on understanding the underlying processes and latest scientific developments in understanding these processes. Theory from lectures is supported by applied examples in practicals through use of maps, experimental analogue materials, and paper exercises. There is some maths (re-arranging and solving simple equations) at a level suitable for all ENV students. COURSE CONTENT Earth structure and heat budget Models for tectonic plate motion The Wilson cycle Features and process that characterise continental and oceanic crust, plate boundaries. Faults and seismicity Making and evolving magma Differentiation, storage, movement and eruption of magma How this unit fits into your degree: This is an excellent introduction to some of the principles that underpin many topics in the Earth Sciences in particular. It can be taken as a general interest module but also works particularly well for those with an interest in natural hazards and/or geological processes. Topics discussed also involve some of the basic geological principles behind the deposition and storage of fossil fuels. CAREER PROSPECTS A knowledge of Earth's structure and geological processes are desirable for understanding many of Earth's natural systems, to support interpretations of geophysical surveys, (relevant to sub-surface resources of all kinds) and understanding of geo-hazards. Thus is relevant to research and employment in construction industry, geo-consultancy, geo-hazard assessment and risk mitigation. Typical employers may include the BGS, geophysical companies (e.g. Gardline, Fugro) and prepare for MSc and PhD that may lead to employment with companies and consultants engaged in resource exploration (from hydrocarbons to water to CO2 storage). The transferable employability skills include self-directed report writing, thinking in 4D (3D spatial + time), team work, also the integration of physical process with people, resources and the environment.

ENV-5018A

20

POPULATION ECOLOGY AND MANAGEMENT

We live in a human dominated era recently designated "the Anthropocene". Humans harvest more than half of the primary productivity of the planet, many resources are over-exploited or depleted (e.g. fisheries) never before it was so important to correctly manage natural resources for an exponentially growing human population. It is, thus, fundamental to predict where other species occur and the sizes of their populations (abundance). Population Ecology it is an area dedicated to the dynamics of population development. In this module we will look closely at how populations are regulated, from within through density dependent factors and, from external density independent factors. We start the module with a global environmental change perspective to the management of populations and the factors that affect the population size. We then extend these ideas to help us understand population properties and processes both intra-specifically and inter-specifically. Finally we examine several management applications where we show that a good understanding of the population modelling is essential to correctly manage natural resources on the planet. Practicals will be based on statistical or modelling projects and will provide a strong training in both subject specific and transferrable skills.

ENV-5014A

20

SOCIAL RESEARCH SKILLS FOR GEOGRAPHERS AND ENVIRONMENTAL SCIENTISTS

The study of society and its relationship to the natural environment poses distinct research challenges and social science presents a range of approaches and methods with which to address these problems. This module provides an introduction to the theory and practice of social science research. It covers research design, sampling, data collection, data analysis and interpretation, and presentation of results. It is recommended for any student intending to carry out a social science-based research project.

ENV-5031B

20

SOCIAL RESEARCH SKILLS FOR GEOGRAPHERS AND ENVIRONMENTAL SCIENTISTS WITH FIELDCOURSE

The study of society and its relationship to the natural environment poses distinct research challenges and social science presents a range of approaches and methods with which to address these problems. The module provides an introduction to the theory and practice of social science research. This will cover different perspectives on research, developing a research question, research design, research ethics, sampling, data collection, data analysis and interpretation, and includes quantitative, qualitative and mixed-method approaches. The learning outcomes will be for students to be able to demonstrate: (i) Knowledge and critical understanding of relevant concepts and principles (ii) Ability to apply concepts and principles to the design of social science research (iii) Knowledge of some of the main methods of enquiry (iv) Ability to evaluate critically different approaches (v) Ability to present effectively a research proposal, both orally and in writing. The module will include a field course at Easter based in Keswick, an area which provides excellent opportunities for studying a range of geographical and environmental issues, including flooding, low-carbon energy developments, spatial contrasts in economic development and landscape management. The first part of the field course will consist of four days of faculty-organised activities where students will be able to practice questionnaire surveys, interviewing and other social research methods. During the final two days students will work in small groups to plan a research investigation from a list of pre-defined topics. Each group will present their research proposal on the final afternoon of the field course as a piece of formative assessment and the individual members will then write separate short reports on their proposal as their second item of summative assessment for the module. There will be an additional charge for students to attend the field course, though the cost is substantially reduced through financial support from ENV.

ENV-5036K

20

Students must study the following modules for 40 credits:

Name Code Credits

Students will select 0 - 40 credits from the following modules:

Students will select 0-40 credits: 0-20 in SEM1 and 0-20 in SEM2.

Name Code Credits

ENERGY AND PEOPLE

This module will introduce students to a range of social science perspectives on the inter-relationships between energy and people. The module begins by tracing the history and development of energy intensive societies and everyday lives as a means of understanding how energy has emerged as a key sustainability problem. The second part of the module then introduces some theories of social and technical change and uses these to critically analyse a range of people-based solutions to energy problems - including behaviour change initiatives, domestic energy efficiency technologies, and community-scale renewables - that are currently being tried and tested around the world. TEACHING AND LEARNING The module is taught through a combination of lectures and seminars involving group projects, peer discussions, practical exercises and student-led learning. The lectures (2 per week) will introduce students to some core theoretical ideas about the relationships between energy and people, as well as examining a series of people-based solutions to energy problems that have been attempted around the world. The seminar sessions (1 per week) will give students the opportunity to engage with the lecture content in more depth through a range of exercises designed to promote discussion with both course lecturers and peers. Essential readings will be identified for each lecture. To do well in the module students will need to demonstrate that they have engaged extensively with the literature in this area, particularly regarding the 'real world' implications of theoretical ideas and debates. CAREER PROSPECTS Contemporary energy problems are a key concern of central and local government policy, business activities, charity and community work and wider public debates. A key reason why existing solutions to these problems either fail or are not as effective as at first assumed, is that they are often based on a poor understanding of how people use and engage with energy in the course of their everyday lives. Improving students' understanding of the relationships between energy and people and providing them with the intellectual tools necessarily to critically assess energy problems and potential solutions will therefore give them with a significant advantage in this growing job market. In addition to enhancing employability in the specific area of energy, this module will also provide students with a range of key transferable skills that will help them secure gainful employment on completion of their undergraduate degree. These include: developing analytical and critical thinking skills; understanding how to work effectively in teams; advocacy and negotiation skills; developing creative approaches to presentation; and presenting work to different audiences.

ENV-6026B

20

FOSSIL FUELS

Geological, economic and political aspects of fossil fuels (oil, natural gas and coal) are introduced. These are used to discuss environmental concerns arising from the use of fossil fuels, and the potentially profound implications of future fuel scarcity. This module is suitable for students taking degrees in the School of Environmental Sciences. Some knowledge of Earth science will be expected. Therefore before taking this module you must take or be taking at least 20 credits of Earth Science or Geophysics modules at honours level. This module replaces ENV-3A35.

ENV-6009A

20

GEOPHYSICAL HAZARDS

Geophysical hazards such as earthquakes, volcanic eruptions, tsunamis and landslides have significant environmental and societal impacts. This module focuses on the physical basis and analysis of each hazard, their global range of occurrence and their local and global impact. The module addresses matters such as hazard monitoring, modelling and assessment. The module considers approaches towards risk mitigation and the reduction of vulnerability (individual and societal), with an emphasis on their practical implementation. Scenarios and probabilities of mega-disasters are also investigated. All the teaching faculty involved have practical experience of supplying professional advice on these hazards (and related risks) in addition to their own research involvement. A basic knowledge of physical science and of mathematics is assumed e.g. use of logs, exponentials, powers, cosines, rearrangement of equations.

ENV-6001B

20

MODERN METHODS IN AIR POLLUTION SCIENCE

Air pollution is one of the most significant environmental problems of the 21st century, with serious implications for human health and mortality, ecosystem and infrastructure damage, and climate change. This module will look at cutting-edge, state-of-the-art methods used to measure and monitor air pollutants at urban, regional and global scales, and how these measurements are interpreted using a variety of numerical models and graphical tools.

ENV-6020B

20

Students will select 0 - 40 credits from the following modules:

Name Code Credits

BIOLOGICAL OCEANOGRAPHY AND MARINE ECOLOGY

This module examines the microbial processes that underpin our dependence on the marine environment for 'services' such as climate modulation and nutrient regeneration. The module will cover the evolution, biodiversity and molecular ecology of bacteria, diatoms, coccolithophores and nitrogen fixers, and the physiology and distribution of zooplankton. Example ecosystems such as the Antarctic, mid ocean gyres and Eastern Boundary Upwelling Systems will be studied in detail and predictions of the impact of environmental change (increasing temperature, decreasing pH, decreasing oxygen, and changes in nutrient supply) on marine ecosystem dynamics will be examined. Biological oceanographic methods will be critically evaluated. The module will include a reading week in week 7 and employability visits to the Centre for the Environment, Fisheries and Aquaculture Science (CEFAS) and British Antarctic Survey (BAS).

ENV-6005A

20

CATCHMENT WATER RESOURCES

This module will adopt an integrated approach to studying surface water and groundwater resources in river basins to enable students to analyse aspects of land management that affect catchment water resources and ecosystems.

ENV-6018B

20

CLIMATE SYSTEMS

This module is about understanding the processes that determine why the Earth's climate (defined, for example, as its temperature and moisture distribution) looks like it does, what are the major circulation patterns and climate zones around the world and how do they arise, how and why the climate can change in time over different timescales, and how we can use this knowledge to understand the climate systems of other planets. This course is aimed at those students who wish to further their knowledge of climate and climatology, and also want a base for any future study of climate change, such as students doing the Meteorology/Oceanography or the Environmental Geography and Climate Change degrees. Note that Meteorology I (ENV 5008A) is a prerequisite for this module. After completing this module, students should be able to: # Understand the processes that control the energy balance of the atmosphere (following on from ENV-5008A) # Explain the temperature and moisture structure of the atmosphere # Understand the science underlying regional and global circulations and climatic zones (complementing level M/6-level Global Circulation and Dynamical Oceanography, feeding into M-level Physical Science Basis of Climate Change) # Identify how and why climate changes on a variety of timescales (feeding into M-level Physical Science Basis of Climate Change, M-level Geoengineering) # Use this knowledge to understand other climate.

ENV-6025B

20

Students will select 0 - 40 credits from the following modules:

Students will select 0-40 credits, 0-20 in SEM1 and 0-20 in SEM2

Name Code Credits

BIODIVERSITY CONSERVATION AND HUMAN SOCIETY

The global biodiversity crisis threatens mass species loss. What are the implications for society? How can communities solve this problem in a world that is facing other challenges of climate change, food security and justice? This inter-disciplinary module focused on the interactions between biodiversity and human societies is designed for students of Geography, Environmental Science, Ecology and International Development who have an interest in biodiversity. The module adopts a rigorous evidence-based approach. Classes first critically examine the human drivers of biodiversity loss and the importance of biodiversity to human society, to understand how underlying perspectives and motivations influence approaches to conservation. We then examine conflicts between human society and conservation and how these potentially can be resolved, reviewing institutions and potential instruments for biodiversity conservation in both Europe and developing countries. Although particularly relevant to Ecology students with an interest in biodiversity conservation, the module is also suitable for Environmental Science or Geography students who have not taken ecological modules; where a simple understanding of ecological principles is important to understanding material, these will be reviewed in class. There are no formal pre-requisites. The module is particularly relevant for students who have previously taken one or other of: ENV-5014A Population Ecology and Management; ENV-5002B Environmental Politics and Policy Making; BIO- 5014B Community, Ecosystem and Macro-Ecology; or DEV-5013Y Natural Resources and Development. At Level 6 it is complementary to: ENV-6012B Natural Resources and Environmental Economics; ENV-6024B Science, Society and Sustainability; or DEV-6005B Contemporary Issues in Resource Development and Conservation.

ENV-6006A

20

PALAEOCLIMATOLOGY

This module examines the geological evidence for major climatic change through the Quaternary Period (the last 2.6 million years) and the long-term evolution of climate through the Cenozoic Era (the last 65 million years). The key mechanisms behind these major global environmental changes are explored using a wide range of approaches - stable isotope geochemistry, sedimentology, radioisotopes, palaeoecology, and organic geochemistry. We will focus on selected topics that relate to the extent, timing and causes of past variations of climate as expressed through changes in the geological record and the fossil record. Taught classes will largely draw on information obtained from marine sediments, ice cores, and terrestrial and lacustrine biological and sedimentological archives. Topics to be covered include: # Past climate change and causes of change over geological timescales # Driving mechanisms of Quaternary climate change# # High frequency climate variability# # Stratigraphy and geochronology # Palaeotemperature reconstruction# # Ice sheet variability and climate linkages# # Sea level change over geological timescales # Palaeoclimate modelling The module provides an essential geological perspective on the topic of climate change and the interpretation of past environments for those interested from either an academic or consultancy viewpoint. The interdisciplinary nature of this module means that it provides valuable skills for those who have interests in pursuing careers in oceanography, climatology, sedimentology, hydrogeology, archaeology and environmental management/consultancy.

ENV-6017B

20

THE CARBON CYCLE AND CLIMATE CHANGE

What do you know about the drivers of climate change? Carbon dioxide (CO2) is the greenhouse gas that has, by far, the greatest impact on climate change, but how carbon cycles through the Earth is complex and not fully understood. Predicting future climate or defining 'dangerous' climate change is challenging, in large part because of this complexity. In this module you will learn about the atmosphere, ocean and land components of the carbon cycle. We cover urgent global issues such as ocean acidification and how to get off our fossil fuel 'addiction'. The complexity of the carbon cycle leads to a truly inter-disciplinary module, incorporating elements of chemistry, ecology, physics, mathematics and geography. We also consider several human dimensions such as: how to 'decarbonise' the UK; geoengineering the climate; how to deal with climate denialists; how to verify greenhouse gas emissions; and the policy relevance of the carbon cycle. The understanding of the carbon cycle gained from this module is an important foundation for all climate change studies. Emphasis is given to the most recent, cutting-edge research in the field.

ENV-6008A

20

Students will select 0 - 40 credits from the following modules:

Name Code Credits

FIELD COURSE TO EAST AFRICA

This fourteen-day field course to a remote part of north-western Kenya is set provisionally to run in late June/early July 2016 and only if 24 students accept a place with a waiting list of at least six reserves. A significant personal contribution towards costs is required and students must also pay for their own vaccinations and entry visa (because these costs vary between individuals). In most years, students stay in Kenya for two weeks after the field course for holidays that they have organized themselves. The field course is likely to be based in the Marich Pass Field Studies Centre in West Pokot and will be advertised in November 2015 via emails to eligible students. Applications are made directly to the Module Organizer. Places will be offered by email and must be accepted before the Christmas Break.

ENV-6015K

20

MODELLING ENVIRONMENTAL PROCESSES

The aim of the module is to show how environmental problems may be solved from the initial problem, to mathematical formulation and numerical solution. Problems will be described conceptually, then defined mathematically, then solved numerically via computer programming. The module consists of lectures on numerical methods and computing practicals (using Matlab); the practicals being designed to illustrate the solution of problems using the methods covered in lectures. The module will guide students through the solution of a model of an environmental process of their own choosing. The problem will be discussed and placed into context through a project proposal, instead of an essay, and then solved and written up in a project report. The skills developed in this module are highly valued by prospective employers of students wishing to carry on into further studies or in professional employment. TEACHING AND LEARNING The aim of this course is to show how environmental problems may be solved from the initial problem, to mathematical formulation and numerical solution. There is a focus on examples within meteorology, oceanography and also the solid earth. The course consists of lectures on numerical methods, taught computing practicals and an independent project. The taught practicals illustrate the solution of a broad range of environmental problems using the methods covered in lectures. The module will guide students through an individual project which will develop a simple numerical model of an environmental process of their own choosing. The problem will be discussed and placed into context through a proposal, and then solved and written up in a project report. The first 8 weeks of the module are taught lectures and practicals, while the last 4 weeks is devoted to completing the independent project. The computing practicals are run in Matlab and a brief review of programming in Matlab is included in the module. Previous programming experience in any language will be extremely useful. The skills developed in this unit are highly valued by prospective employers of students wishing to carry on into further studies or in professional employment. COURSE CONTENT: Lectures, computing practicals and an independent project CAREER PROSPECTS: Numerical modelling and computer programming are commonly requested skills for science graduates, especially those looking towards further study or to stay in science.

ENV-6004A

20

NATURAL RESOURCES AND ENVIRONMENTAL ECONOMICS

Have you ever wondered why human economic activity seems to be so bad for the environment? Does it have to be like that? Is it possible for human beings to enjoy high standards of living and a high quality environment? Through the study of the principles of Environmental Economics this course sets out to answer those questions. Addressing a wide-range of economy-environment problems including car pollution, over-fishing, climate change and declining oil stocks, the course shows that most environmental problems can be solved through the adoption of policies crafted with the careful application of economic reasoning.

ENV-6012B

20

Disclaimer

Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. Where this is the case, the University will endeavour to inform students.

Entry Requirements

  • A Level ABB including one Science based subject from the preferred list
  • International Baccalaureate 32 points including one HL subject from the preferred list at 5 and one other HL subject at 5
  • Scottish Advanced Highers ABB including one Science based subject from the preferred list
  • Irish Leaving Certificate AABBBB or 2 subjects at H1 and 4 subjects at H2 including one subject from the preferred list
  • Access Course Pass the Access to HE Diploma with Distinction in 30 credits at Level 3 and Merit in 15 credits at Level 3, including 12 Level 3 Science credits.
  • BTEC DDM in relevant subject
  • European Baccalaureate 75% overall, with at least 70% in one Science subject from the preferred list

Entry Requirement

You are required to have Mathematics and English Language at a minimum of Grade C or Grade 4 or above at GCSE Level.

Applicants are asked to have at least one science based A-level or equivalent. Acceptable science subjects include: Biology, Chemistry, Economics, Environmental Science / Studies, Geography, Geology, Mathematics, Physics.

General Studies and Critical Thinking are not accepted.

 

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including writing, speaking, listening and reading):

  • IELTS : 6.5 overall (minimum 6.0 in any component)

We also accept a number of other English language tests. Please click here to see our full list.

INTO University of East Anglia 

If you do not meet the academic and or English requirements for direct entry our partner, INTO University of East Anglia offers guaranteed progression on to this undergraduate degree upon successful completion of a preparation programme. Depending on your interests, and your qualifications you can take a variety of routes to this degree:

International Foundation in General Science FS1

International Foundation in Pharmacy, Biomedicine and Health FS2

International Foundation in Physical Sciences and Mathematics FS3 

Interviews

The majority of candidates will not be called for an interview and a decision will be made via UCAS Track. However, for some students an interview will be requested. You may be called for an interview to help the School of Study, and you, understand if the course is the right choice for you.  The interview will cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.  Where an interview is required the Admissions Service will contact you directly to arrange a convenient time.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year.  We believe that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and to contact admissions@uea.ac.uk directly to discuss this further.

Intakes

The School's annual intake is in September of each year.

  • A Level ABB including one science based subject
  • International Baccalaureate 32 points including two HL subject at 5, including a science related subject
  • Scottish Highers AABBB including one science based subject
  • Scottish Advanced Highers ABB including one science based subject
  • Irish Leaving Certificate AABBBB including one science based subject
  • Access Course Pass the Access to HE Diploma with Distinction in 30 credits at Level 3 and Merit in 15 credits at Level 3, including 12 Level 3 credits in a science subject.
  • BTEC DDM in a science related subject
  • European Baccalaureate 75% overall, with at least 70% in a science subject

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including writing, speaking, listening and reading):

  • IELTS (SELT): 6.0 overall (minimum 5.5 in any component)

We also accept a number of other English language tests. Please click here to see our full list.

INTO University of East Anglia 

If you do not meet the academic and or English requirements for direct entry our partner, INTO University of East Anglia offers guaranteed progression on to this undergraduate degree upon successful completion of a preparation programme. Depending on your interests, and your qualifications you can take a variety of routes to this degree:

International Foundation in General Science FS1

International Foundation in Pharmacy, Biomedicine and Health FS2

International Foundation in Physical Sciences and Mathematics FS3 

Interviews

The majority of candidates will not be called for an interview. However, for some students an interview will be requested. These are normally quite informal and generally cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year, believing that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and may wish to contact the appropriate Admissions Office directly to discuss this further.

Special Entry Requirements

Applicants are asked to have at least one science based A-Level or equivalent. Acceptable science subjects include: Biology, Chemistry, Economics, Environmental Science/Studies, Geography, Geology, Mathematics, Physics.

General Studies and Critical Thinking are not accepted.

Alternative Qualifications

We encourage you to apply if you have alternative qualifications equivalent to our stated entry requirement. Please contact us for further information.

GCSE Offer

Students are required to have GCSE Mathematics and English Language at grade C or above.

Fees and Funding

Undergraduate University Fees and Financial Support: Home and EU Students

Tuition Fees

Please see our webpage for further information on the current amount of tuition fees payable for Home and EU students and for details of the support available.

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. 

Home/EU - The University of East Anglia offers a range of Bursaries and Scholarships.  To check if you are eligible please visit 

______________________________________________________________________

Undergraduate University Fees and Financial Support: International Students

Tuition Fees

Please see our webpage for further information on the current amount of tuition fees payable for International Students.

Scholarships

We offer a range of Scholarships for International Students – please see our website for further information.

 

How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The system allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it must be sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The UCAS code name and number for the University of East Anglia is EANGL E14.

Further Information

If you would like to discuss your individual circumstances with the Admissions Office prior to applying please do contact us:

Undergraduate Admissions Office (Environmental Sciences)
Tel: +44 (0)1603 591515
Email: admissions@uea.ac.uk

Please click here to register your details online via our Online Enquiry Form.

International candidates are also actively encouraged to access the University's International section of our website.

    Next Steps

    We already know that your university experience will be life-changing, wherever you decide to go. At UEA, we also want to make that experience brilliant, in every way. Explore these pages to see exactly how we do this…

    We can’t wait to hear from you. Just pop any questions about this course into the form below and our enquiries team will answer as soon as they can.

    Admissions enquiries:
    admissions@uea.ac.uk or
    telephone +44 (0)1603 591515