BSc Environmental Geophysics with a Year in Industry

Key facts

(2014 Research Excellence Framework)

Article

What’s really happening beneath our feet? Physicists and Environmental Scientists at UEA are using ingenious methods to work out exactly what’s flowing under the Earth’s surface, helping us to better understand earthquakes, volcanoes and the complex engine at the heart of our dynamic planet.

Read It

Article

What's it like living in the shadow of a volcano? UEA's Environmental Scientists have been working with communities in Latin America to reduce the impact of eruptions.

Read It

Video

The School of Environmental Sciences is one of the longest established, largest and most fully developed Schools of Environmental Sciences in Europe. Our holistic approach to teaching and research, integrating physical, chemical, biological, social and geotechnical sciences into the study of natural and human environments, is truly a modern philosophy for the new millennium.

Watch It

Key facts

(QS World Rankings 2016)

Article

Water Baby

What's making the antarctic melt? We've put robots into the ocean to unlock the complexities of warm water.

Read It

Video

View our video about Field Courses.

Watch It
This course explores solid earth geophysics in the context of the entire earth system. You’ll study the Earth’s many processes, from the seas and skies to the deep interior, and learn about the way they control our environment. You will also have the opportunity to spend a year gaining valuable experience at a company of your choice.

This is a highly desirable degree due to the varied skills you’ll develop as well as the many industrial, governmental and academic applications the subject has. UEA is also one of the best places to study it – we’re ranked first in the UK for research impact (REF 2014) and have a global reputation for excellence in Environmental Sciences.

Your first year will provide you with the scientific tools you need, including Maths and Mechanics, while your second and final years will enable you to focus on diverse areas of study; from Oceanography and Meteorology to Geodynamics and Volcanology. Your third year will be spent on placement.

Overview

This unique degree programme allows you to study not only the Earth, but also how the whole earth system and its interactions control our environment. We follow a complete and integrated physical approach to address the environmental issues that threaten our future.

Furthermore you will have the opportunity to take part in a year in industry, which will make for an invaluable addition to your scientific knowledge and technique. It will increase your employability and gives you the chance to put your first two years of learning into practice.

Within the degree programme you will study the skies, seas and the Earth's deep interior, examining the surface to discover how the Earth has developed into what is seen today. Our course allows you to develop a quantitative, physical understanding of the whole earth system alongside the processes that control our environment.

Taught within the School of Environmental Sciences, the degree programme enables students to choose a multidisciplinary path of study, stressing the links between wide-ranging subjects from solid earth geophysics to oceanography. The course also benefits from our strong links with local and multinational companies. The UEA is situated in close proximity to the North Sea, which means all our students are invited to visit the facilities of local geophysical companies and carry out practical work using industrial data and software.

Graduates of UEA’s programmes in Environmental Geophysics easily find employment, gaining a wide range of skills that are highly-prized by employers. Many have gone on to work for various local and multinational companies within sectors including geophysical exploration and services, geotechnical engineering, risk analysis, environmental consultancy, amongst many others.

Field Course Options

Field courses and practical classes are an integral part of training our Environmental Geophysics students. You will be introduced to many different geological environments and learn to use a variety of technological equipment through the wide range of field courses available.

Course Structure

This four year course follows a similar structure to the BSc Environmental Geophysics, but with an additional year of gaining work experience through an industrial placement. The first year of study employs core compulsory modules to establish your knowledge on essential topics. You will have the chance to select from optional modules in the second and final years in order to allow you to direct your own studies. In the final year you will also have the opportunity to undertake an independent research project on a subject of your choice.  

Year 1
A series of compulsory modules introduce you to the general scientific principles governing geophysics. Multi-disciplinary modules from the wider Faculty of Science allow you to develop the essential analytical skills you will need for further study – including Maths for Scientists, Probability, Mechanics and Modelling.  

Year 2
As the course progresses you are given greater freedom to tailor your course around your own interests, choosing from a wide variety of modules from Global Tectonics to Sedimentology. Compulsory modules continue to develop your mathematical knowledge.

Year 3 (Year in Industry)
You will spend your third year on an industrial work placement lasting from 9 to 14 months, gaining relevant experience and developing your skills and knowledge. We have established research links throughout the UK and beyond, and we will help you in identifying and competing for appropriate positions.

Year 4
Your final year of study is centred around a large individual research project, allowing you to investigate a specialist area in professional depth. You will also study a range of advanced modules surrounding geophysical science as well as the wider social impacts of the subject, including Geophysical Hazards and Meteorology.

Assessment

A variety of assessment methods are used in different modules, ranging from 100% coursework to 100% examination, with the majority of modules being weighted 67% examination, 33% coursework. Coursework assessment methods include essays, written discussions, class tests, problem sheets, laboratory reports, field exercises and seminar presentations. Coursework and exam styles may also vary, promoting a variety of learning, recall and presentational skills.

Year in Industry

Completion of a Year in Industry programme will ensure you graduate with relevant work experience, putting you one step ahead of other students. This exciting degree programme provides you with this opportunity.

There is no greater asset in today’s competitive job market than relevant work experience. A Year in Industry will give you first-hand knowledge of not only the mechanics of how your chosen field operates but it will also greatly improve your chances of progressing within that sector as you seal valuable contacts and insight. These courses will also enhance your studies as theory is transformed into reality in a context governed by very real, time and financial constraints.

Our Industrial Links

We have well-established commercial connections throughout the UK and beyond. Over 100 of our students have undertaken year-long placements as part of this programme. The fine work undertaken by the students leads to an ever growing network of employers who have experienced the positive benefits which come from offering a placement opportunity. We can help you to tap into this network and also provide other ideas of organisations who you might contact. Our students have worked in environmental roles within Local and National Government, in SMEs and Multinationals, for Environmental Consultancies and Research Institutes and with Conservation groups and NGOs.

Financial Benefits

A big attraction to this type of course, apart from the enhanced career prospects, is that students will pay much reduced tuition fees for that year (see fees and funding tab). In addition, of course, you are typically paid by the placement provider during the year, a great way to help fund your studies.

For the latest on financial arrangements for our Year in Industry students please visit the UEA Finance webpage.

How it Works

The Year in Industry degree programmes are four years in length with the work placement taking place during your third year. Placements constitute a minimum of nine months full-time employment and a maximum of 14 months.

In Years 1 and 2, we will help you prepare for an industrial placement by running workshops to raise awareness of key issues and to encourage networking. We will make sure you are fully aware of all the organisations who have previously hosted our placement students. We will also advertise all current placement opportunities of which we are aware. Our Careers service will be on hand to help with your applications. With this support, you will take the lead in securing your own placement - not only will this ensure that you work within your preferred field of Environmental Sciences, it will also provide you with the essential job-hunting skills you will require after graduation. Throughout the work placement itself, you will keep in close contact with an assigned mentor at UEA and your mentor will also visit you in your place of work during the year. In your placement year you will also undertake a Work Based Learning module which will help you to reflect on and get the very most from the placement experience.

Please note that we cannot guarantee any student a work placement as this decision rests with potential employers and students will be expected to source these placements themselves. If you were unable to secure a work placement by the end of your second year you will have the option to apply to be transferred onto the equivalent three-year degree programme without a Year in Industry.

“The Year in Industry was one of the best choices I could have made for my career. It enabled me to gain valuable technical skills and responsibilities, essential for improving my employability as well as developing industry contacts”.

Bex Holmes, BSc Environmental Sciences with a Year in Industry – Placement at Atkins Ltd

“I was reemployed by my placement provider BRE and owe this important start in life and my career to the Year in Industry programme. I really think it provides opportunities and essential experience for the workplace and hope it goes from strength to strength in the future”.

Roger Connick, BSc Environmental Sciences with a Year in Industry – Placement at BRE.

View our Year in Industry brochure.

Course Modules

Students must study the following modules for 100 credits:

Name Code Credits

GLOBAL ENVIRONMENTAL CHALLENGES

What are the most pressing environmental challenges facing the world today? How do we understand these problems through cutting-edge environmental science research? What are the possibilities for building sustainable solutions to address them in policy and society? In this module you will tackle these questions by taking an interdisciplinary approach to consider challenges relating to climate change, biodiversity, water resources, natural hazards, and technological risks. In doing so you will gain an insight into environmental science research 'in action' and develop essential academic study skills needed to explore these issues.

ENV-4001A

20

MATHEMATICS FOR SCIENTISTS A

This module covers differentiation, integration, vectors, partial differentiation, ordinary differential equations, further integrals, power series expansions, complex numbers and statistical methods. In addition to the theoretical background there is an emphasis on applied examples. Previous knowledge of calculus is assumed. This module is the first in a series of three maths modules for students across the Faculty of Science that provide a solid undergraduate mathematical training. The follow-on modules are Mathematics for Scientists B and C.

ENV-4015Y

20

PROBABILITY AND MECHANICS

(a) Probability. Probability as a measurement of uncertainty, statistical experiments and Bayes' theorem. Discrete and continuous distributions. Expectation. Applications of probability: Markov chains, reliability theory. (b) Mechanics. Discussion of Newton's laws of motion. Particle dynamics. Orbits. Conservation laws.

MTHB4007B

20

RESEARCH AND FIELD SKILLS

This module introduces a range of transferable skills, tools and data resources that are widely used in research across the Environmental Sciences and Geography. It aims to provide a broad understanding of the research process through activities that involve i) formulating research questions, ii) collecting data using appropriate sources and techniques, iii) collating and evaluating information and iv) presenting results. A week-long residential field course, held at Easter and based at Slapton Ley, Devon, applies field, lab and other skills to a variety of environmental science and geography topics.

ENV-4004Y

20

UNDERSTANDING THE DYNAMIC PLANET

Understanding of natural systems is underpinned by physical laws and processes. This module explores energy, mechanics, physical properties of Earth materials and their relevance to environmental science using examples from across the Earth's differing systems. The formation, subsequent evolution and current state of our planet are considered through its structure and behaviour - from the planetary interior to the dynamic surface and into the atmosphere. Plate Tectonics is studied to explain Earth's physiographic features - such as mountain belts and volcanoes - and how the processes of erosion and deposition modify them. The distribution of land masses is tied to global patterns of rock, ice and soil distribution and to atmospheric and ocean circulation. We also explore geological time - the 4.6 billion year record of changing conditions on the planet - and how geological maps can used to understand Earth history. This course provides an introduction to geological materials - rocks, minerals and sediments - and to geological resources and natural hazards.

ENV-4005A

20

Students will select 20 credits from the following modules:

Students will be assigned to 20 credits from the following units. Assignments will be made according to previous Chemistry qualifications.

Name Code Credits

PHYSICAL AND CHEMICAL PROCESSES IN THE EARTH'S SYSTEM I

The habitability of planet Earth depends on the physical and chemical systems on the planet which control everything from the weather and clim ate to the growth of all living organisms. This module aims to introduce you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret these systems. The module will lead many of you on to second and third year courses (and beyond) studying these systems in more detail, but even for those of you who choose to study other aspects of environmental sciences a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The course has two distinct components, one on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) and one on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). During the course of the module the teachers will also emphasise the inter-relationships between these two sections This course is taught in two variants: this module provides a Basic Chemistry introduction for those students who have little or no background in chemistry before coming to UEA (see pre-requisites). This course will run throughout semester 2 involving a mixture of lectures, laboratory practical classes, workshops and a half day field trip.

ENV-4007B

20

PHYSICAL AND CHEMICAL PROCESSES IN THE EARTH'S SYSTEM II

The habitability of planet Earth depends on the physical and chemical systems on the planet which control everything from the weather and climate to the growth of all living organisms. This module aims to introduce you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret these systems. The module will lead many of you on to second and third year courses (and beyond) studying these systems in more detail, but even for those of you who choose to study other aspects of environmental sciences a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The course has two distinct components, one on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) and one on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). During the course of the module the teachers will also emphasise the inter-relationships between these two sections This module is for students with previous experience of chemistry. This course will run throughout semester 2 involving a mixture of lectures, laboratory practical classes, workshops and a half day field trip.

ENV-4008B

20

Students must study the following modules for 60 credits:

Name Code Credits

APPLIED GEOPHYSICS

What lies beneath our feet? This module addresses this question by exploring how wavefields and potential fields are used in geophysics to image the subsurface on scales of metres to kilometres. The basic theory, data acquisition and interpretation methods of seismic, electrical, gravity and magnetic surveys are studied. A wide range of applications is covered including archaeological geophysics, energy resources and geohazards. This module is highly valued by employers in industry; guest industrial lecturers will cover the current 'state-of-the-art' applications in real world situations. Students doing this module are normally expected to have a good mathematical ability, notably in calculus and algebra before taking this module (ENV-4015Y Mathematics for Scientists A or equivalent).

ENV-5004B

20

APPLIED GEOPHYSICS WITH FIELDCOURSE

What lies beneath our feet? This module addresses this question by exploring how waves, rays and the various physical techniques are used in geophysics to image the subsurface on scales of meters to kilometres. The basic theory and interpretation methods of seismic, electrical and gravity and magnetic surveys are studied. A wide range of applications is covered including archaeological geophysics, energy resources and geohazards. The fieldcourse provides "hands-on" experience of the various techniques and applications, adding on valuable practical skills. This module is highly valued by employers in industry; guest industrial lecturers will cover the current 'state-of-the-art' applications in real world situations. Students doing this module are normally expected to have a good mathematical ability, notably in calculus and algebra before taking this module (ENV-4015Y Mathematics for Scientists A or equivalent). RESIDENTIAL FIELDCOURSE: This module includes a one-week fieldcourse and is presently held in the Lake District during the Easter break. There will be a charge for attending this field course. The cost is heavily subsidised by the School, but students enrolling must understand that they will commit to paying a sum to cover attendance. As the details of many modules and field courses have changed recently, the following figures should be viewed as ball-park estimates only. If you would like firmer data please consult the module organiser closer to the field course. The cost to the student will be on the order of GBP150.

ENV-5005K

20

INDEPENDENT PROJECT - PROPOSAL

ENV-6021B

0

MATHEMATICS FOR SCIENTISTS B

This module is the second in a series of three mathematical modules for students across the Faculty of Science. It covers vector calculus (used in the study of vector fields in subjects such as fluid dynamics and electromagnetism), time series and spectral analysis (a highly adaptable and useful mathematical technique in many science fields, including data analysis), and fluid dynamics (which has applications to the circulation of the atmosphere, ocean, interior of the Earth, chemical engineering, and biology). There is a continuing emphasis on applied examples.

MTHB5006A

20

MATHEMATICS FOR SCIENTISTS C

MTHB5007B

20

Students will select 0 - 40 credits from the following modules:

Name Code Credits

GIS SKILLS FOR PROJECT WORK

This module builds upon the introduction to GIS provided in the first year Research and Field Skills module, focusing on how students can obtain their own data, integrate it together and then undertake analysis and presentation tasks. ESRI ArcGIS will be the main software used, but there will also be an introduction to scripting tools (Python) and open source software (QGIS). Teaching will consist of a one-hour lecture and a three-hour practical class each week. Students should expect to spend a significant amount of time outside of scheduled classes on their formative and summative coursework.

ENV-5028B

20

OCEAN CIRCULATION

This module gives you an understanding of the physical processes occurring in the basin-scale ocean environment. We will introduce and discuss large scale global ocean circulation, including gyres, boundary currents and the overturning circulation. Major themes include the interaction between ocean and atmosphere, and the forces which drive ocean circulation. You should be familiar with partial differentiation, integration, handling equations and using calculators. Shelf Sea Dynamics is a natural follow-on module and builds on some of the concepts introduced here. We strongly recommend that you also gain oceanographic fieldwork experience by taking the 20-credit biennial Marine Sciences fieldcourse.

ENV-5016A

20

Students will select 0 - 40 credits from the following modules:

(20 credits in SEM1 and 20 credits in SEM2)

Name Code Credits

EARTH SCIENCE LAB SKILLS

Good observational and descriptive skills lie at the heart of many areas of Environmental Science. This module is designed to develop those and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects in this area. The module will include: observing, describing and recording the characteristics of geological materials (hand specimen and under microscope); measuring and representing 3d data, and reading geological maps.

ENV-5029B

20

EARTH SCIENCE SKILLS

This module is designed to develop good observational and descriptive skills and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects. The module will include: observing, describing and recording the characteristics of geological materials (in the field, in hand specimen and under microscope); measuring and representing 3d data, reading geological maps and basic geological mapping. The module includes a week-long residential field work in the Easter vacation which has an added cost implication in the region of GBP250.

ENV-5030B

20

GLOBAL TECTONICS

Processes in the Earth's interior have exerted a profound influence on all aspects of the Earth's system through geological time. This module is designed to explore all aspects of those processes from the creation and destruction of tectonic plates to the structure of the Earth's interior and the distribution and dissipation of energy within it. This will include: the theory and mechanisms of plate tectonics, the generation of magma and volcanism; the mechanisms behind earthquakes. The geological record of this activity, its evolution and impacts on the Earth will also be discussed.

ENV-5018A

20

Students will select 0 - 20 credits from the following modules:

MTHD6018B Dynamical Meteorology and MTHE6007B Dynamical Oceanography will run in alternate years. Students must check that the module chosen from this range does not have a timetable clash with modules already selected, noting that no more than one module with the same timetable slot e.g. EE can be taken in one semester.

Name Code Credits

HYDROLOGY AND HYDROGEOLOGY

Hydrology and hydrogeology are Earth Science subjects concerned with the assessment of the natural distribution of water in time and space and the evaluation of human impacts on the water. This module provides an introduction to geological controls on groundwater occurrence, aquifer characteristics, basic principles of groundwater flow, basic hydrochemistry, an introduction to catchment hydrology, hydrological data collection and analysis, runoff generation processes and the principles of rainfall-runoff modelling. Practical classes develop analytical skills in solving problems as well as field skills in pumping test analysis and stream gauging. A field excursion in Norfolk is also offered in this module.

ENV-5021A

20

LOW CARBON ENERGY

This module examines the physical/chemical principles of energy science and technologies - from clean energy generation and conversion, such as renewables, bioenergy, batteries, and hydrogen and fuel cells. It provides a systematic and integrated account of scientific/technical issues of the energy resources and conversion. The knowledge is used to make rational analyses of energy availability, applications and selections from physical, technical and environmental considerations. It also provides students with the opportunity to explore the future of energy provision in greater depth in practical sessions. These include invited talks, energy debates and group discussions on the applications of low carbon energy technologies.

ENV-5022B

20

METEOROLOGY I

This module is designed to give a general introduction to meteorology, concentrating on the physical processes in the atmosphere and how these influence our weather. The module contains both descriptive and mathematical treatments of radiation balance, fundamental thermodynamics, dynamics, boundary layers, weather systems and meteorological hazards. The assessment is designed to allow those with either mathematical or descriptive abilities to do well; however a reasonable mathematical competence is essential, including a basic understanding of differentiation and integration.

ENV-5008A

20

SEDIMENTOLOGY

Sedimentary rocks cover much of the Earth's surface, record the Earth's history of environmental change, contain the fossil record and host many of the world's natural resources. This module includes the study of modern sediments such as sand, mud and carbonates and the processes that result in their deposition. Understanding of modern processes is used to interpret ancient sedimentary rocks, their stratigraphy and the sedimentary structures they contain.

ENV-5035B

20

SHELF SEA DYNAMICS AND COASTAL PROCESSES

The shallow shelf seas that surround the continents are the oceans that we most interact with. They contribute a disproportionate amount to global marine primary production and CO2 drawdown into the ocean, and are important economically through commercial fisheries, offshore oil and gas exploration, and renewable energy developments (e.g. offshore wind farms). This module explores the physical processes that occur in shelf seas and coastal waters, their effect on biological, chemical and sedimentary processes, and how they can be harnessed to generate renewable energy.

ENV-5017B

20

Students must study the following modules for 120 credits:

Name Code Credits

YEAR IN INDUSTRY

This module represents the year spent on work placement by students registered on an ENV programme incorporating a year in industry. Assessment is purely on a pass/fail basis with respect to completing a work placement, complementary to the degree, of at least nine months duration.

ENV-5032Y

120

Students must study the following modules for 60 credits:

Name Code Credits

INDEPENDENT PROJECT

This module is compulsory for all degree courses in the School of Environmental Sciences and is an independent piece of research. With guidance from a supervisor, each student chooses a topic, designs the research and collects, analyses and interprets data. The student is expected to report on progress at various stages: in the selection of a topic, the detailed plan, an interim report and an oral presentation. A final report in the form of a dissertation not exceeding 10,000 words is required. When planning the project and again after completing the report, students reflect on the range of subject-specific and generic skills acquired through their degree and how these are reinforced and complemented by skills acquired through their project. A final item of summative work assesses the clarity by which the student communicates and evidences their range of skills in the form of a covering letter and cv for a potential job application. To further support the transition to employment students can present a formative research poster that summarises the main aspects of the work to prospective employers.

ENV-6021A

40

MODELLING ENVIRONMENTAL PROCESSES

The aim of the module is to show how environmental problems may be solved from the initial problem, to mathematical formulation and numerical solution. Problems will be described conceptually, then defined mathematically, then solved numerically via computer programming. The module consists of lectures on numerical methods and computing practicals (using Matlab); the practicals being designed to illustrate the solution of problems using the methods covered in lectures. The module will guide students through the solution of a model of an environmental process of their own choosing. The skills developed in this module are highly valued by prospective employers.

ENV-6004A

20

Students will select 0 - 40 credits from the following modules:

Students may only select 20 credits in Autumn semester and/or 20 credits in Spring semester

Name Code Credits

ADVANCED STATISTICS

This module covers two topics in statistical theory: Linear and Generalised Linear models and also includes Stochastic processes. The first two topics consider both the theory and practice of statistical model fitting and students will be expected to analyse real data using R. Stochastic processes including the random walk, Markov chains, Poisson processes, and birth and death processes.

CMP-6004A

20

CATCHMENT WATER RESOURCES

This module will adopt an integrated approach to studying surface water and groundwater resources in river basins to enable students to analyse aspects of land management that affect catchment water resources and ecosystems.

ENV-6018B

20

NATURAL RESOURCES AND ENVIRONMENTAL ECONOMICS

This module introduces some key principles of economics for students who have not studied the subject previously. It then explores how these principles can be applied to address a number of economy-environment problems including air pollution and over-fishing. The framework of cost-benefit analysis as a framework for decision-making is also introduced.

ENV-6012B

20

Students will select 0 - 40 credits from the following modules:

Name Code Credits

FOSSIL FUELS

Geological, economic and political aspects of fossil fuels (oil, natural gas and coal) are introduced. These are used to discuss environmental concerns arising from the use of fossil fuels, and the potentially profound implications of future fuel scarcity on society. This module is suitable for students taking degrees in the School of Environmental Sciences. It can also be taken by students doing the Energy Engineering With Environmental Manageement course in the School of Mathematics. Some knowledge of Earth science and basic Chemistry will be expected.

ENV-6009A

20

GEOPHYSICAL HAZARDS

Geophysical hazards such as earthquakes, volcanic eruptions, tsunamis and landslides have significant environmental and societal impacts. This module focuses on the physical basis and analysis of each hazard, their global range of occurrence, probability of occurrence and their local and global impact. The module addresses matters such as hazard monitoring, modelling and assessment. The module considers approaches towards risk mitigation and the reduction of vulnerability (individual and societal), with an emphasis on their practical implementation. Scenarios and probabilities of mega-disasters are also investigated. All the teaching faculty involved have practical experience of supplying professional advice on these hazards (and related risks) in addition to their own research involvement. A basic knowledge of physical science and of mathematics is assumed e.g. use of logs, exponentials, powers, cosines, rearrangement of equations.

ENV-6001B

20

Students will select 0 - 20 credits from the following modules:

Students must submit a request to the School for a place on a fieldcourse.

Name Code Credits

GEOSCIENCES FIELDCOURSE: GREECE

This field course is designed to promote a deeper understanding and integration of geoscience subjects: the fieldwork will usually concentrate on applied skills in aspects of structural geology, regional tectonics, sedimentology, palaeoclimate and palaeoenvironments, and volcanology. There are two field bases in the Aegean (Greece), the Gulf of Corinth active rift, and Santorini volcano.

ENV-6022K

20

PALAEOCLIMATOLOGY

This module examines the geological evidence for climatic change through the Quaternary Period (the last 2.6 million years) and the longer-term evolution of climate through the Cenozoic Era (the last 65 million years). The interpretation and causal mechanisms behind these major global environmental changes are explored using a diverse range of approaches - isotope geochemistry, sedimentology, palaeoecology and organic geochemistry. We focus on geochemical, biological and sedimentological information obtained from marine sediments, ice cores, and terrestrial environments and use these records to reconstruct the timing extent and magnitude of selected climatic events as expressed through changes in the geological record.

ENV-6017B

20

Students will select 0 - 20 credits from the following modules:

NOTE: Students must check that the module chosen from this range does not have a timetable clash with modules already selected, noting that no more than one module with the same timetable slot e.g. EE, can be taken in one semester. PLEASE NOTE that no more than 20 credits of level 5 modules can be taken at Stage 3.

Name Code Credits

APPLIED STATISTICS A

This is a module designed to give students the opportunity to apply statistical methods in realistic situations. While no advanced knowledge of probability and statistics is required, we expect students to have some background in probability and statistics before taking this module. The aim is to teach the R statistical language and to cover 3 topics: Linear regression, and Survival Analysis.

CMP-5017B

20

EARTH SCIENCE LAB SKILLS

Good observational and descriptive skills lie at the heart of many areas of Environmental Science. This module is designed to develop those and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects in this area. The module will include: observing, describing and recording the characteristics of geological materials (hand specimen and under microscope); measuring and representing 3d data, and reading geological maps.

ENV-5029B

20

EARTH SCIENCE SKILLS

This module is designed to develop good observational and descriptive skills and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects. The module will include: observing, describing and recording the characteristics of geological materials (in the field, in hand specimen and under microscope); measuring and representing 3d data, reading geological maps and basic geological mapping. The module includes a week-long residential field work in the Easter vacation which has an added cost implication in the region of GBP250.

ENV-5030B

20

ENERGY AND PEOPLE

This module will introduce students to a range of social science perspectives on the inter-relationships between energy and people. The module begins by tracing the history and development of energy intensive societies and everyday lives as a means of understanding how energy has emerged as a key sustainability problem. The second part of the module then introduces some theories of social and technical change and uses these to critically analyse a range of people-based solutions to energy problems - including behaviour change initiatives, domestic energy efficiency technologies, and community-scale renewables - that are currently being tried and tested around the world. TEACHING AND LEARNING The module is taught through a combination of lectures and seminars involving group projects, peer discussions, practical exercises and student-led learning. The lectures (2 per week) will introduce students to some core theoretical ideas about the relationships between energy and people, as well as examining a series of people-based solutions to energy problems that have been attempted around the world. The seminar sessions (1 per week) will give students the opportunity to engage with the lecture content in more depth through a range of exercises designed to promote discussion with both course lecturers and peers. Essential readings will be identified for each lecture. To do well in the module students will need to demonstrate that they have engaged extensively with the literature in this area, particularly regarding the 'real world' implications of theoretical ideas and debates. CAREER PROSPECTS Contemporary energy problems are a key concern of central and local government policy, business activities, charity and community work and wider public debates. A key reason why existing solutions to these problems either fail or are not as effective as at first assumed, is that they are often based on a poor understanding of how people use and engage with energy in the course of their everyday lives. Improving students' understanding of the relationships between energy and people and providing them with the intellectual tools necessarily to critically assess energy problems and potential solutions will therefore give them with a significant advantage in this growing job market. In addition to enhancing employability in the specific area of energy, this module will also provide students with a range of key transferable skills that will help them secure gainful employment on completion of their undergraduate degree. These include: developing analytical and critical thinking skills; understanding how to work effectively in teams; advocacy and negotiation skills; developing creative approaches to presentation; and presenting work to different audiences.

ENV-6026B

20

GLOBAL TECTONICS

Processes in the Earth's interior have exerted a profound influence on all aspects of the Earth's system through geological time. This module is designed to explore all aspects of those processes from the creation and destruction of tectonic plates to the structure of the Earth's interior and the distribution and dissipation of energy within it. This will include: the theory and mechanisms of plate tectonics, the generation of magma and volcanism; the mechanisms behind earthquakes. The geological record of this activity, its evolution and impacts on the Earth will also be discussed.

ENV-5018A

20

HYDROLOGY AND HYDROGEOLOGY

Hydrology and hydrogeology are Earth Science subjects concerned with the assessment of the natural distribution of water in time and space and the evaluation of human impacts on the water. This module provides an introduction to geological controls on groundwater occurrence, aquifer characteristics, basic principles of groundwater flow, basic hydrochemistry, an introduction to catchment hydrology, hydrological data collection and analysis, runoff generation processes and the principles of rainfall-runoff modelling. Practical classes develop analytical skills in solving problems as well as field skills in pumping test analysis and stream gauging. A field excursion in Norfolk is also offered in this module.

ENV-5021A

20

LOW CARBON ENERGY

This module examines the physical/chemical principles of energy science and technologies - from clean energy generation and conversion, such as renewables, bioenergy, batteries, and hydrogen and fuel cells. It provides a systematic and integrated account of scientific/technical issues of the energy resources and conversion. The knowledge is used to make rational analyses of energy availability, applications and selections from physical, technical and environmental considerations. It also provides students with the opportunity to explore the future of energy provision in greater depth in practical sessions. These include invited talks, energy debates and group discussions on the applications of low carbon energy technologies.

ENV-5022B

20

METEOROLOGY I

This module is designed to give a general introduction to meteorology, concentrating on the physical processes in the atmosphere and how these influence our weather. The module contains both descriptive and mathematical treatments of radiation balance, fundamental thermodynamics, dynamics, boundary layers, weather systems and meteorological hazards. The assessment is designed to allow those with either mathematical or descriptive abilities to do well; however a reasonable mathematical competence is essential, including a basic understanding of differentiation and integration.

ENV-5008A

20

METEOROLOGY II

This module will build upon material covered in ENV-5008A by covering topics such as synoptic meteorology, weather hazards, micro-meteorology, further thermodynamics and weather forecasting. The module includes a major summative coursework assignment based on data collected on a UEA meteorology fieldcourse in a previous year.

ENV-5009B

20

METEOROLOGY II WITH FIELDCOURSE

This module will build upon material covered in ENV-5008A by covering topics such as synoptic meteorology, weather hazards, micro-meteorology, further thermodynamics and weather forecasting. The module also includes a week long Easter vacation residential fieldcourse, based in the Lake District, involving students in designing scientific experiments to quantify the effects of micro- and synoptic-scale weather and climate processes, focusing on lake, forest and mountain environments. There will be a charge to students in the order of GBP160 for attending this fieldcourse which is also heavily subsidized by the School.

ENV-5010K

20

OCEAN CIRCULATION

This module gives you an understanding of the physical processes occurring in the basin-scale ocean environment. We will introduce and discuss large scale global ocean circulation, including gyres, boundary currents and the overturning circulation. Major themes include the interaction between ocean and atmosphere, and the forces which drive ocean circulation. You should be familiar with partial differentiation, integration, handling equations and using calculators. Shelf Sea Dynamics is a natural follow-on module and builds on some of the concepts introduced here. We strongly recommend that you also gain oceanographic fieldwork experience by taking the 20-credit biennial Marine Sciences fieldcourse.

ENV-5016A

20

PROGRAMMING FOR NON-SPECIALISTS

The purpose of this module is to give the student a solid grounding in the essential features programming using the Java programming language. The module is designed to meet the needs of the student who has not previously studied programming.

CMP-5020B

20

SEDIMENTOLOGY

Sedimentary rocks cover much of the Earth's surface, record the Earth's history of environmental change, contain the fossil record and host many of the world's natural resources. This module includes the study of modern sediments such as sand, mud and carbonates and the processes that result in their deposition. Understanding of modern processes is used to interpret ancient sedimentary rocks, their stratigraphy and the sedimentary structures they contain.

ENV-5035B

20

SHELF SEA DYNAMICS AND COASTAL PROCESSES

The shallow shelf seas that surround the continents are the oceans that we most interact with. They contribute a disproportionate amount to global marine primary production and CO2 drawdown into the ocean, and are important economically through commercial fisheries, offshore oil and gas exploration, and renewable energy developments (e.g. offshore wind farms). This module explores the physical processes that occur in shelf seas and coastal waters, their effect on biological, chemical and sedimentary processes, and how they can be harnessed to generate renewable energy.

ENV-5017B

20

Disclaimer

Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. Where this is the case, the University will endeavour to inform students.

Entry Requirements

  • A Level ABB including Mathematics
  • International Baccalaureate 32 points including HL Mathematics at 5 and one other HL subject at 5
  • Scottish Advanced Highers ABB including Mathematics
  • Irish Leaving Certificate AABBBB or 2 subjects at H1 and 4 subjects at H2 including Mathematics
  • Access Course Pass the Access to HE Diploma with Distinction in 36 credits at Level 3 and Merit in 9 credits at Level 3, including 12 Level 3 Maths credits.
  • BTEC DDM in relevant subject area, with at least 6 units in Maths
  • European Baccalaureate 75% overall with at least 70% in Maths

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including writing, speaking, listening and reading):

  • IELTS : 6.5 overall (minimum 6.0 in any component)

We also accept a number of other English language tests. Please click here to see our full list.

If you do not meet the University's entry requirements, our INTO Language Learning Centre offers a range of university preparation courses to help you develop the high level of academic and English skills necessary for successful undergraduate study.

Interviews

The majority of candidates will not be called for an interview. However, for some students an interview will be requested. These are normally quite informal and generally cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year, believing that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and may wish to contact the appropriate Admissions Office directly to discuss this further.

Special Entry Requirements

A level Mathematics or equivalent.

General Studies and Critical Thinking are not accepted.

Intakes

The School's annual intake is in September of each year.

Alternative Qualifications

We encourage you to apply if you have alternative qualifications equivalent to our stated entry requirement. Please contact us for further information.

GCSE Offer

Students are required to have GCSE Mathematics and English Language at minimum of Grade C or above.

Fees and Funding

Undergraduate University Fees and Financial Support: Home and EU Students

Tuition Fees

Please see our webpage for further information on the current amount of tuition fees payable for Home and EU students and for details of the support available.

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. 

Home/EU - The University of East Anglia offers a range of Bursaries and Scholarships.  To check if you are eligible please visit 

______________________________________________________________________

Undergraduate University Fees and Financial Support: International Students

Tuition Fees

Please see our webpage for further information on the current amount of tuition fees payable for International Students.

Scholarships

We offer a range of Scholarships for International Students – please see our website for further information.

 

How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The system allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it must be sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The UCAS code name and number for the University of East Anglia is EANGL E14.

Further Information

If you would like to discuss your individual circumstances with the Admissions Service prior to applying please do contact us:

Undergraduate Admissions Service
Tel: +44 (0)1603 591515
Email: admissions@uea.ac.uk

Please click here to register your details via our Online Enquiry Form.

International candidates are also actively encouraged to access the University's International section of our website.

    Next Steps

    We can’t wait to hear from you. Just pop any questions about this course into the form below and our enquiries team will answer as soon as they can.

    Admissions enquiries:
    admissions@uea.ac.uk or
    telephone +44 (0)1603 591515