BSc Climate Change with a Year in Industry


Attendance
Full Time
Award
Degree of Bachelor of Science



UCAS Course Code
F814
A-Level typical
ABB (2017/8 entry) See All Requirements
Visit Us
This innovative degree programme gives you a comprehensive understanding of the science, impacts and politics of climate change. The huge importance of this scientific challenge has led to a major increase in the demand for scientists trained in the field, making this degree one of the most relevant qualifications available. You’ll also spend your third year gaining valuable work experience in a company or organisation of your choice.

UEA has one of the best Environmental Sciences departments in the world, ranked 1st in the UK for research impact (REF 2014) and boasting a huge range of world-leading scientists and influential climate research centres.

You’ll study a wide range of environmental challenges using multidisciplinary research skills, as well as analysis of media communication and governmental policy. You’ll have the chance to tailor your degree to your own interests in the second year, culminating in a year-long work placement and a final year research project.

Overview

There is a pressing need for people who understand both the environmental and social complexities of climate change. This degree programme offers you the chance to study climate change from a unique multi-disciplinary perspective in one of the world’s leading university departments for the study of climate change.

This innovative undergraduate degree programme allows you to study the physical, geochemical, social, economic and political dimensions of climate change. Furthermore you will have the opportunity to take part in a Year in Industry, which will make for an invaluable addition to your scientific knowledge and technique. It will increase your employability and gives you the chance to put your first two years of learning into practice.

You will explore the natural and human drivers of climate change, alongside how we have responded so far to its challenges. This requires a broad range of disciplinary perspectives, which we will provide to enable you to understand how different approaches to climate change complement each other. You will also receive a thorough grounding in the natural sciences, reflecting our unique multi-disciplinary approach. Our academics, who are world-leading researchers, have also studied climate change from this inter-disciplinary perspective and make sure you benefit from their diverse knowledge.

By studying Climate Change at UEA you will find out the answers to these questions and many more:

  • Is it possible to prevent dangerous climate change?

  • How will different regions around the world be impacted by climate change?

  • What are the innovation challenges and technological solutions for climate change?

  • What is the physical basis for climate change in atmospheric and oceanic processes?

  • How can energy consumption in the western world be reduced?

In your third year, guided by a member of faculty, you will undertake your own research project to answer these or other questions, and so pursue your own interests in climate change as a multi-disciplinary challenge.

Course Structure

This four year course follows a similar structure to the BSc Climate Change, but with an additional year spent gaining work experience in an industrial placement. In the first year you will study the earth system and develop your knowledge of relevant sciences. In years two and four you will focus on the scientific subjects required to study the underlying causes of climate change, alongside continuing to develop vital research skills.

Year 1
A series of compulsory modules introduce you to the major global environmental challenges facing mankind, with an emphasis on climate change. Multi-disciplinary modules from the School of Environmental Science enable you to develop the essential analytical skills you will need during further years – including Maths for Scientists and Sustainability in Society.

Year 2
As the course progresses you will be given greater freedom to tailor your course around your own interests, as you choose from a large catalogue of optional modules. Compulsory modules begin to diverge from core science towards the wider implications of climate change.

Year 3 (Year in Industry)
You will spend your third year on an industrial work placement lasting from 9 to 14 months, gaining relevant experience and developing your skills and knowledge. We have established research links throughout the UK and beyond, and we will help you in identifying and competing for appropriate positions.

Year 4
During your final year you will undertake a substantial piece of independent research in a topic that matches your interests.

Year In Industry

Completion of a Year in Industry programme will ensure you graduate with relevant work experience, putting you one step ahead of other students. This exciting degree programme provides you with this opportunity.

There is no greater asset in today’s competitive job market than relevant work experience. A Year in Industry will give you first-hand knowledge of not only the mechanics of how your chosen field operates but it will also greatly improve your chances of progressing within that sector as you seal valuable contacts and insight. These courses will also enhance your studies as theory is transformed into reality in a context governed by very real, time and financial constraints.

Our Industrial Links

We have well-established commercial connections throughout the UK and beyond. Over 100 of our students have undertaken year-long placements as part of this programme. The fine work undertaken by the students leads to an ever growing network of employers who have experienced the positive benefits which come from offering a placement opportunity. We can help you to tap into this network and also provide other ideas of organisations who you might contact. Our students have worked in environmental roles within Local and National Government, in SMEs and Multinationals, for Environmental Consultancies and Research Institutes and with Conservation groups and NGOs.

Financial Benefits

A big attraction to this type of course, apart from the enhanced career prospects, is that students will pay much reduced tuition fees for that year (see fees and funding tab). In addition, of course, you are typically paid by the placement provider during the year, a great way to help fund your studies.

For the latest on financial arrangements for our Year in Industry students please visit the UEA Finance webpage.

How it Works

The Year in Industry degree programmes are four years in length with the work placement taking place during your third year. Placements constitute a minimum of nine months full-time employment and a maximum of 14 months.

In Years 1 and 2, we will help you prepare for an industrial placement by running workshops to raise awareness of key issues and to encourage networking. We will make sure you are fully aware of all the organisations who have previously hosted our placement students. We will also advertise all current placement opportunities of which we are aware. Our Careers service will be on hand to help with your applications. With this support, you will take the lead in securing your own placement - not only will this ensure that you work within your preferred field of Environmental Sciences, it will also provide you with the essential job-hunting skills you will require after graduation. Throughout the work placement itself, you will keep in close contact with an assigned mentor at UEA and your mentor will also visit you in your place of work during the year. In your placement year you will also undertake a Work Based Learning module which will help you to reflect on and get the very most from the placement experience.

Please note that we cannot guarantee any student a work placement as this decision rests with potential employers and students will be expected to source these placements themselves. If you were unable to secure a work placement by the end of your second year you will have the option to apply to be transferred onto the equivalent three-year degree programme without a Year in Industry.

“The Year in Industry was one of the best choices I could have made for my career. It enabled me to gain valuable technical skills and responsibilities, essential for improving my employability as well as developing industry contacts”.

Bex Holmes, BSc Environmental Sciences with a Year in Industry – Placement at Atkins Ltd

“I was reemployed by my placement provider BRE and owe this important start in life and my career to the Year in Industry programme. I really think it provides opportunities and essential experience for the workplace and hope it goes from strength to strength in the future”.

Roger Connick, BSc Environmental Sciences with a Year in Industry – Placement at BRE.

For further information, please contact Dr Jane Powell, Year in Industry Co-ordinator, e-mail: tom.hargreaves@uea.ac.uk

Course Modules 2017/8

Students must study the following modules for 60 credits:

Name Code Credits

GLOBAL ENVIRONMENTAL CHALLENGES

What are the most pressing environmental challenges facing the world today? How do we understand these problems through cutting-edge environmental science research? What are the possibilities for building sustainable solutions to address them in policy and society? In this module you will tackle these questions by taking an interdisciplinary approach to consider challenges relating to climate change, biodiversity, water resources, natural hazards, and technological risks. In doing so you will gain an insight into environmental science research 'in action' and develop essential academic study skills needed to explore these issues.

ENV-4001A

20

RESEARCH AND FIELD SKILLS

This module introduces a range of transferable skills, tools and data resources that are widely used in research across the Environmental Sciences and Geography. It aims to provide a broad understanding of the research process through activities that involve i) formulating research questions, ii) collecting data using appropriate sources and techniques, iii) collating and evaluating information and iv) presenting results. A week-long residential field course, held at Easter and based at Slapton Ley, Devon, applies field, lab and other skills to a variety of environmental science and geography topics.

ENV-4004Y

20

SUSTAINABILITY, SOCIETY AND BIODIVERSITY

Striking a balance between societal development, economic growth and environmental protection has proven challenging and contentious. The concept of `sustainability' was coined to denote processes aiming to achieve this balance. This module introduces sustainable development, and examines why sustainability is so difficult to achieve, bringing together social and ecological perspectives. It also explores sustainability from an ecological perspective, introducing a range of concepts relevant to the structure and functioning of the biosphere and topics ranging from landscape and population ecology, to behavioural, physiological, molecular ecology, and biodiversity conservation at different scales. This module is assessed by coursework and an examination.

ENV-4006B

20

Students will select 20 credits from the following modules:

Students will be assigned to 20 credits from the following units (based on Maths experience)

Name Code Credits

ADVANCED QUANTITATIVE SKILLS

This module will strengthen your mathematical skills and will introduce you to differentiation and integration. You will apply quantitative skills to environmental and geographical problems. This module will widen the range of science modules you can take during your studies in geography and environmental sciences. It will cover statistical methods, including summarising data using numerical summaries and graphs, testing hypotheses and carrying out these analyses on computers. Students will be required to purchase access to MyMathLab software either stand-alone (GBP29.99), with an e-book (GBP39.99) or with a hard copy of the Foundation Maths textbook (6th Edition) by by A Croft and R Davison (GBP48.99) (prices for October 2016).

ENV-4014Y

20

MATHEMATICS FOR SCIENTISTS A

This module covers differentiation, integration, vectors, partial differentiation, ordinary differential equations, further integrals, power series expansions, complex numbers and statistical methods. In addition to the theoretical background there is an emphasis on applied examples. Previous knowledge of calculus is assumed. This module is the first in a series of three maths modules for students across the Faculty of Science that provide a solid undergraduate mathematical training. The follow-on modules are Mathematics for Scientists B and C.

ENV-4015Y

20

QUANTITATIVE METHODS

This module explores how quantitative skills can be applied to solve a range of environmental problems. It is designed for students who have a GCSE in maths at grade B or C, but no AS/ A2 qualification (or equivalent). The module will include a review of some fundamental GCSE-level maths (such as manipulating expressions) but will focus on the practical use of maths through physical equations and mathematical models. Students will also learn about summarising data using both numerical summaries and graphs, testing hypotheses and carrying out these analyses on computers. Assessment is through coursework and a statistics course test.

ENV-4013Y

20

Students will select 20 - 40 credits from the following modules:

Name Code Credits

GEOGRAPHICAL PERSPECTIVES

This module provides an introduction and orientation regarding geographical thought, methods and concepts. It begins with an overview of the history and development of the discipline. This leads on to discussion of core concepts such as space, place, scale, systems, nature, landscape and risk. In addition, the methods and different types of evidence used by geographers are introduced. Students will be able to demonstrate an appreciation of the diversity of approaches to the generation of geographical knowledge and understanding and the capacity to communicate geographical ideas, principles, and theories effectively and fluently by written, oral and visual means.

ENV-4010Y

20

UNDERSTANDING THE DYNAMIC PLANET

Understanding of natural systems is underpinned by physical laws and processes. This module explores energy, mechanics, physical properties of Earth materials and their relevance to environmental science using examples from across the Earth's differing systems. The formation, subsequent evolution and current state of our planet are considered through its structure and behaviour - from the planetary interior to the dynamic surface and into the atmosphere. Plate Tectonics is studied to explain Earth's physiographic features - such as mountain belts and volcanoes - and how the processes of erosion and deposition modify them. The distribution of land masses is tied to global patterns of rock, ice and soil distribution and to atmospheric and ocean circulation. We also explore geological time - the 4.6 billion year record of changing conditions on the planet - and how geological maps can used to understand Earth history. This course provides an introduction to geological materials - rocks, minerals and sediments - and to geological resources and natural hazards.

ENV-4005A

20

Students will select 0 - 20 credits from the following modules:

If selecting one of the following modules, students should note that they may be moved to the module most relevant to previous Chemistry qualifications.

Name Code Credits

ATMOSPHERE and OCEANS I

The habitability of planet Earth depends on the physical and chemical systems on the planet which control everything from the weather and clim ate to the growth of all living organisms. This module aims to introduce you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret these systems. The module will lead many of you on to second and third year courses (and beyond) studying these systems in more detail, but even for those of you who choose to study other aspects of environmental sciences a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The course has two distinct components, one on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) and one on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). During the course of the module the teachers will also emphasise the inter-relationships between these two sections This course is taught in two variants: this module provides a Basic Chemistry introduction for those students who have little or no background in chemistry before coming to UEA (see pre-requisites). This course will run throughout semester 2 involving a mixture of lectures, laboratory practical classes, workshops and a half day field trip.

ENV-4007B

20

ATMOSPHERE and OCEANS II

The habitability of planet Earth depends on the physical and chemical systems on the planet which control everything from the weather and climate to the growth of all living organisms. This module aims to introduce you to some of these key cycles and the ways in which physical and chemical scientists investigate and interpret these systems. The module will lead many of you on to second and third year courses (and beyond) studying these systems in more detail, but even for those of you who choose to study other aspects of environmental sciences a basic knowledge of these systems is central to understanding our planet and how it responds to human pressures. The course has two distinct components, one on the physical study of the environment (Physical Processes: e.g. weather, climate, ocean circulation, etc.) and one on the chemical study (Chemical Processes: weathering, atmospheric pollution, ocean productivity, etc.). During the course of the module the teachers will also emphasise the inter-relationships between these two sections This module is for students with previous experience of chemistry. This course will run throughout semester 2 involving a mixture of lectures, laboratory practical classes, workshops and a half day field trip.

ENV-4008B

20

Students must study the following modules for 40 credits:

Name Code Credits

CLIMATE CHANGE: SCIENCE AND POLICY

This module develops skills and understanding in the integrated analysis of global climate change, using perspectives from both the natural sciences and the social sciences. The course gives grounding in the basics of climate change science, impacts, adaptation, mitigation and their influence on and by policy decisions. It also offers a historical perspective on how climate policy has developed, culminating in the December 2015 Paris Agreement. Finally, it considers what will be required to meet the goal of the Paris Agreement to limit global warming to well below 2 #C above pre-industrial levels.

ENV-5003A

20

ENVIRONMENTAL POLITICS AND POLICY MAKING

The most significant obstacles to problem solving are often political, not scientific or technological. This module examines the emergence and processes of environmental politics. It analyses these from different theoretical perspectives, particularly theories of power and public policy making. The module is focused on contemporary examples of politics and policy making at UK, EU and international levels. The module supports student-led learning by enabling students to select (and develop their own theoretical interpretations of) 'real world' examples of politics. Assessment is via seminar presentations and a 4000 word case study essay. The module assumes no prior knowledge of politics.

ENV-5002B

20

INDEPENDENT PROJECT - PROPOSAL

ENV-6021B

0

Students will select 20 - 60 credits from the following modules:

Name Code Credits

AQUATIC ECOLOGY

An analysis of how chemical, physical and biological influences shape the biological communities of rivers, lakes and estuaries in temperate and tropical regions. There is an important practical component to this module that includes three field visits and laboratory work, usually using microscopes and sometimes analyzing water quality. The first piece of course work involves statistical analysis of class data. The module fits well with other ecology modules, final-year Catchment Water Resources and with modules in development studies or geography. It can also be taken alongside Aquatic Biogeochemistry, other geochemical modules and hydrology. Students must have a background in basic statistical analysis of data. Lectures will show how the chemical and physical features of freshwaters influence their biological communities. Students may attend video screenings that complement lectures with examples of aquatic habitats in the tropics.

ENV-5001A

20

EARTH SCIENCE LAB SKILLS

Good observational and descriptive skills lie at the heart of many areas of Environmental Science. This module is designed to develop those and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects in this area. The module will include: observing, describing and recording the characteristics of geological materials (hand specimen and under microscope); measuring and representing 3d data, and reading geological maps.

ENV-5029B

20

EARTH SCIENCE SKILLS

This module is designed to develop good observational and descriptive skills and is particularly suitable for students with interests in Earth and Geophysical Sciences. It will cover generic Earth science skills of use for projects. The module will include: observing, describing and recording the characteristics of geological materials (in the field, in hand specimen and under microscope); measuring and representing 3d data, reading geological maps and basic geological mapping. The module includes a week-long residential field work in the Easter vacation which has an added cost implication in the region of GBP250.

ENV-5030B

20

GIS SKILLS FOR PROJECT WORK

This module builds upon the introduction to GIS provided in the first year Research and Field Skills module, focusing on how students can obtain their own data, integrate it together and then undertake analysis and presentation tasks. ESRI ArcGIS will be the main software used, but there will also be an introduction to scripting tools (Python) and open source software (QGIS). Teaching will consist of a one-hour lecture and a three-hour practical class each week. Students should expect to spend a significant amount of time outside of scheduled classes on their formative and summative coursework.

ENV-5028B

20

SOCIAL RESEARCH SKILLS FOR GEOGRAPHERS AND ENVIRONMENTAL SCIENTISTS

The study of society and its relationship to the natural environment poses distinct research challenges and social science presents a range of approaches and methods with which to address these problems. This module provides an introduction to the theory and practice of social science research. It covers research design, sampling, data collection, data analysis and interpretation, and presentation of results. It is recommended for any student intending to carry out a social science-based research project.

ENV-5031B

20

SOCIAL RESEARCH SKILLS FOR GEOGRAPHERS AND ENVIRONMENTAL SCIENTISTS WITH FIELDCOURSE

The study of society and its relationship to the natural environment poses distinct research challenges and social science presents a range of approaches and methods with which to address these problems. The module provides an introduction to the theory and practice of social science research. This will cover different perspectives on research, developing a research question, research design, research ethics, sampling, data collection, data analysis and interpretation, and includes quantitative, qualitative and mixed-method approaches. The learning outcomes will be for students to be able to demonstrate: (i) Knowledge and critical understanding of relevant concepts and principles (ii) Ability to apply concepts and principles to the design of social science research (iii) Knowledge of some of the main methods of enquiry (iv) Ability to evaluate critically different approaches (v) Ability to present effectively a research proposal, both orally and in writing. The module will include a field course at Easter based in Keswick, an area which provides excellent opportunities for studying a range of geographical and environmental issues, including flooding, low-carbon energy developments, spatial contrasts in economic development and landscape management. The first part of the field course will consist of four days of faculty-organised activities where students will be able to practice questionnaire surveys, interviewing and other social research methods. During the final two days students will work in small groups to plan a research investigation from a list of pre-defined topics. Each group will present their research proposal on the final afternoon of the field course as a piece of formative assessment and the individual members will then write separate short reports on their proposal as their second item of summative assessment for the module. There will be an additional charge in the region of GBP250 for students to attend the field course.

ENV-5036K

20

Students will select 20 - 60 credits from the following modules:

Name Code Credits

ATMOSPHERIC CHEMISTRY AND GLOBAL CHANGE

Atmospheric chemistry and global change are in the news: Stratospheric ozone depletion, acid rain, greenhouse gases, and global scale air pollution are among the most significant environmental problems of our age. Chemical composition and transformations underlie these issues, and drive many important atmospheric processes. This module covers the fundamental chemical principles and processes in the atmosphere from the Earth's surface to the stratosphere, and considers current issues of atmospheric chemical change through a series of lectures, problem-solving classes, seminars, experimental and computing labs as well as a field trip to UEA's own atmospheric observatory in Weybourne/North Norfolk.

ENV-5015A

20

HYDROLOGY AND HYDROGEOLOGY

Hydrology and hydrogeology are Earth Science subjects concerned with the assessment of the natural distribution of water in time and space and the evaluation of human impacts on the water. This module provides an introduction to geological controls on groundwater occurrence, aquifer characteristics, basic principles of groundwater flow, basic hydrochemistry, an introduction to catchment hydrology, hydrological data collection and analysis, runoff generation processes and the principles of rainfall-runoff modelling. Practical classes develop analytical skills in solving problems as well as field skills in pumping test analysis and stream gauging. A field excursion in Norfolk is also offered in this module.

ENV-5021A

20

LOW CARBON ENERGY: SCIENCE AND TECHNOLOGY

This module examines the physical/chemical principles of energy science and technologies - from clean energy generation and conversion, such as renewables, bioenergy, batteries, and hydrogen and fuel cells. It provides a systematic and integrated account of scientific/technical issues of the energy resources and conversion. The knowledge is used to make rational analyses of energy availability, applications and selections from physical, technical and environmental considerations. It also provides students with the opportunity to explore the future of energy provision in greater depth in practical sessions. These include invited talks, energy debates and group discussions on the applications of low carbon energy technologies.

ENV-5022B

20

METEOROLOGY I

This module is designed to give a general introduction to meteorology, concentrating on the physical processes in the atmosphere and how these influence our weather. The module contains both descriptive and mathematical treatments of radiation balance, fundamental thermodynamics, dynamics, boundary layers, weather systems and meteorological hazards. The assessment is designed to allow those with either mathematical or descriptive abilities to do well; however a reasonable mathematical competence is essential, including a basic understanding of differentiation and integration.

ENV-5008A

20

NATURE, HUMANITY and ENVIRONMENTAL VALUES: THE PHILOSOPHY OF THE ENVIRONMENT

The aim of this module is to look at some of the philosophical and ethical issues underlying environmental concerns. In particular, we will ask in what sense it is possible to speak of a moral relationship of humans with their non-human environment. We will focus on understanding whether environmental value is intrinsic or relative to human interests, and look at how this distinction relates to arguments about the nature of our obligations towards other species and the natural environment. Finally we will examine some of the difficulties that debates about environmental policy face.

PPLP5167B

20

OCEAN CIRCULATION

This module gives you an understanding of the physical processes occurring in the basin-scale ocean environment. We will introduce and discuss large scale global ocean circulation, including gyres, boundary currents and the overturning circulation. Major themes include the interaction between ocean and atmosphere, and the forces which drive ocean circulation. You should be familiar with partial differentiation, integration, handling equations and using calculators. Shelf Sea Dynamics is a natural follow-on module and builds on some of the concepts introduced here. We strongly recommend that you also gain oceanographic fieldwork experience by taking the 20-credit biennial Marine Sciences fieldcourse.

ENV-5016A

20

SHELF SEA DYNAMICS AND COASTAL PROCESSES

The shallow shelf seas that surround the continents are the oceans that we most interact with. They contribute a disproportionate amount to global marine primary production and CO2 drawdown into the ocean, and are important economically through commercial fisheries, offshore oil and gas exploration, and renewable energy developments (e.g. offshore wind farms). This module explores the physical processes that occur in shelf seas and coastal waters, their effect on biological, chemical and sedimentary processes, and how they can be harnessed to generate renewable energy.

ENV-5017B

20

SOIL PROCESSES AND ENVIRONMENTAL ISSUES

This module will combine lectures, practicals, seminars and fieldwork to provide students with an appreciation of the soil environment and the processes that occurs within it. The module will progress through: basic soil components/properties; soil identification and classification; soil as a habitat; soil organisms; soil functions; the agricultural environment; soil-organism-agrochemical interaction; soil contamination; soil and climate change; soil ecosystem services and soil quality.

ENV-5012A

20

Students must study the following modules for 120 credits:

Name Code Credits

YEAR IN INDUSTRY

This module represents the year spent on work placement by students registered on an ENV programme incorporating a year in industry. Assessment is purely on a pass/fail basis with respect to completing a work placement, complementary to the degree, of at least nine months duration.

ENV-5032Y

120

Students must study the following modules for 40 credits:

Name Code Credits

INDEPENDENT PROJECT

This module is compulsory for all degree courses in the School of Environmental Sciences and is an independent piece of research. With guidance from a supervisor, each student chooses a topic, designs the research and collects, analyses and interprets data. The student is expected to report on progress at various stages: in the selection of a topic, the detailed plan, an interim report and an oral presentation. A final report in the form of a dissertation not exceeding 10,000 words is required. When planning the project and again after completing the report, students reflect on the range of subject-specific and generic skills acquired through their degree and how these are reinforced and complemented by skills acquired through their project. A final item of summative work assesses the clarity by which the student communicates and evidences their range of skills in the form of a covering letter and cv for a potential job application. To further support the transition to employment students can present a formative research poster that summarises the main aspects of the work to prospective employers.

ENV-6021A

40

Students will select 20 - 60 credits from the following modules:

Name Code Credits

CLIMATE SYSTEMS

This module is about understanding the processes that determine why the Earth's climate (defined, for example, by temperature and moisture distribution) looks like it does, what are the major circulation patterns and climate zones and how do they arise, why the climate changes in time over different timescales, and how we use this knowledge to understand the climate systems of other planets. This course is aimed at those students who wish to further their knowledge of climate, or want a base for any future study of climate change, such as students doing the Meteorology/Oceanography or Climate Change degrees.

ENV-6025B

20

PALAEOCLIMATOLOGY

This module examines the geological evidence for climatic change through the Quaternary Period (the last 2.6 million years) and the longer-term evolution of climate through the Cenozoic Era (the last 65 million years). The interpretation and causal mechanisms behind these major global environmental changes are explored using a diverse range of approaches - isotope geochemistry, sedimentology, palaeoecology and organic geochemistry. We focus on geochemical, biological and sedimentological information obtained from marine sediments, ice cores, and terrestrial environments and use these records to reconstruct the timing extent and magnitude of selected climatic events as expressed through changes in the geological record.

ENV-6017B

20

THE CARBON CYCLE AND CLIMATE CHANGE

What do you know about the drivers of climate change? Carbon dioxide (CO2) is the greenhouse gas that has, by far, the greatest impact on climate change, but how carbon cycles through the Earth is complex and not fully understood. Predicting future climate or defining 'dangerous' climate change is therefore challenging. In this module you will learn about the atmosphere, ocean and land components of the carbon cycle. We cover urgent global issues such as ocean acidification and how to get off our fossil fuel 'addiction', as well as how to deal with climate denialists.

ENV-6008A

20

Students will select 20 - 60 credits from the following modules:

Name Code Credits

BIODIVERSITY CONSERVATION AND HUMAN SOCIETY

The global biodiversity crisis threatens mass species loss. What are the implications for society? How can communities solve this problem in a world that is facing other challenges of climate change, food security, environmental and social justice? This inter-disciplinary module focused on the interactions between biodiversity and human societies is designed for students of Geography, Environmental Science, Ecology and International Development who have an interest in biodiversity and its conservation.

ENV-6006A

20

ENERGY AND PEOPLE

This module will introduce students to a range of social science perspectives on the inter-relationships between energy and people. The module begins by tracing the history and development of energy intensive societies and everyday lives as a means of understanding how energy has emerged as a key sustainability problem. The second part of the module then introduces some theories of social and technical change and uses these to critically analyse a range of people-based solutions to energy problems - including behaviour change initiatives, domestic energy efficiency technologies, and community-scale renewables - that are currently being tried and tested around the world. TEACHING AND LEARNING The module is taught through a combination of lectures and seminars involving group projects, peer discussions, practical exercises and student-led learning. The lectures (2 per week) will introduce students to some core theoretical ideas about the relationships between energy and people, as well as examining a series of people-based solutions to energy problems that have been attempted around the world. The seminar sessions (1 per week) will give students the opportunity to engage with the lecture content in more depth through a range of exercises designed to promote discussion with both course lecturers and peers. Essential readings will be identified for each lecture. To do well in the module students will need to demonstrate that they have engaged extensively with the literature in this area, particularly regarding the 'real world' implications of theoretical ideas and debates. CAREER PROSPECTS Contemporary energy problems are a key concern of central and local government policy, business activities, charity and community work and wider public debates. A key reason why existing solutions to these problems either fail or are not as effective as at first assumed, is that they are often based on a poor understanding of how people use and engage with energy in the course of their everyday lives. Improving students' understanding of the relationships between energy and people and providing them with the intellectual tools necessarily to critically assess energy problems and potential solutions will therefore give them with a significant advantage in this growing job market. In addition to enhancing employability in the specific area of energy, this module will also provide students with a range of key transferable skills that will help them secure gainful employment on completion of their undergraduate degree. These include: developing analytical and critical thinking skills; understanding how to work effectively in teams; advocacy and negotiation skills; developing creative approaches to presentation; and presenting work to different audiences.

ENV-6026B

20

NATURAL RESOURCES AND ENVIRONMENTAL ECONOMICS

This module introduces some key principles of economics for students who have not studied the subject previously. It then explores how these principles can be applied to address a number of economy-environment problems including air pollution and over-fishing. The framework of cost-benefit analysis as a framework for decision-making is also introduced.

ENV-6012B

20

Students will select 0 - 40 credits from the following modules:

Students will select 0-40 credits from the following modules (and not both ENV-6030K and ENV-6015K)

Name Code Credits

BIOLOGICAL OCEANOGRAPHY AND MARINE ECOLOGY

This module explores the evolution, biodiversity and ecology of bacteria, diatoms, coccolithophores and nitrogen fixers, and the physiology and distribution of zooplankton. Example ecosystems such as the Antarctic, mid ocean gyres and Eastern Boundary Upwelling Systems will be studied in detail and predictions of the impact of environmental change (increasing temperature, decreasing pH, decreasing oxygen, and changes in nutrient supply) on marine ecosystem dynamics will be examined. Biological oceanographic methods will be critically evaluated. The module will include a reading week in week 7 and a voluntary employability visit to the Centre for the Environment, Fisheries and Aquaculture Science (CEFAS). Students are expected to have some background in biology, e.g. have taken a biology, ecology or biogeochemistry based second year module.

ENV-6005A

20

CATCHMENT WATER RESOURCES

This module will adopt an integrated approach to studying surface water and groundwater resources in river basins to enable students to analyse aspects of land management that affect catchment water resources and ecosystems.

ENV-6018B

20

ENERGY AND PEOPLE

This module will introduce students to a range of social science perspectives on the inter-relationships between energy and people. The module begins by tracing the history and development of energy intensive societies and everyday lives as a means of understanding how energy has emerged as a key sustainability problem. The second part of the module then introduces some theories of social and technical change and uses these to critically analyse a range of people-based solutions to energy problems - including behaviour change initiatives, domestic energy efficiency technologies, and community-scale renewables - that are currently being tried and tested around the world. TEACHING AND LEARNING The module is taught through a combination of lectures and seminars involving group projects, peer discussions, practical exercises and student-led learning. The lectures (2 per week) will introduce students to some core theoretical ideas about the relationships between energy and people, as well as examining a series of people-based solutions to energy problems that have been attempted around the world. The seminar sessions (1 per week) will give students the opportunity to engage with the lecture content in more depth through a range of exercises designed to promote discussion with both course lecturers and peers. Essential readings will be identified for each lecture. To do well in the module students will need to demonstrate that they have engaged extensively with the literature in this area, particularly regarding the 'real world' implications of theoretical ideas and debates. CAREER PROSPECTS Contemporary energy problems are a key concern of central and local government policy, business activities, charity and community work and wider public debates. A key reason why existing solutions to these problems either fail or are not as effective as at first assumed, is that they are often based on a poor understanding of how people use and engage with energy in the course of their everyday lives. Improving students' understanding of the relationships between energy and people and providing them with the intellectual tools necessarily to critically assess energy problems and potential solutions will therefore give them with a significant advantage in this growing job market. In addition to enhancing employability in the specific area of energy, this module will also provide students with a range of key transferable skills that will help them secure gainful employment on completion of their undergraduate degree. These include: developing analytical and critical thinking skills; understanding how to work effectively in teams; advocacy and negotiation skills; developing creative approaches to presentation; and presenting work to different audiences.

ENV-6026B

20

ENVIRONMENTAL CONSULTANCY

This module provides experience of working on a 'real-world' environment- related project presented by an external organisation. Students will first learn how a business functions and expectations for professional behaviour. Multidisciplinary environmental 'problems' will be presented as case study projects by external organisations. Acting as an 'environmental consultant' students will form small teams to discuss feasible solutions, with the opportunity for discussion and feedback with the host organisation. Each student will submit an individual business-style report of what they could offer to resolve the problem. Overall, providing a taster of the post-graduate transition to working with an organisation.

ENV-6031B

20

FIELD COURSE TO EAST AFRICA

This fourteen-day field course is based at Marich Pass Field Studies Centre, in a remote part of north-western Kenya. The course is set provisionally for early July 2018 and will only run if 24 students, that must be in their second year, accept a place. Students work in three-person groups and with the help of a local guide, carry out a field project of their choice that may range from geography, social sciences, natural resources to ecology, depending on modules taken in YR2. Students are asked to contribute approximately 50% to the cost of the field course.

ENV-6015K

20

FOSSIL FUELS

Geological, economic and political aspects of fossil fuels (oil, natural gas and coal) are introduced. These are used to discuss environmental concerns arising from the use of fossil fuels, and the potentially profound implications of future fuel scarcity on society. This module is suitable for students taking degrees in the School of Environmental Sciences. It can also be taken by students doing the Energy Engineering With Environmental Manageement course in the School of Mathematics. Some knowledge of Earth science and basic Chemistry will be expected.

ENV-6009A

20

GEOGRAPHY AND ENVIRONMENTAL SCIENCES FIELD COURSE TO SPAIN

This module seeks to promote a deeper understanding of the interactions between the natural environment and human society through field-based teaching and project work in Almeria, southern Spain. This region provides classic examples of landform evolution and arid environments, as well as experiencing major socio-economic changes in recent decades. Field activities will focus on such issues as agriculture, water resources, renewable energy and adaptation to climate change. Methods for evaluating the sustainability of developments will be assessed. The module is assessed by an individual evidence report and public communication item. Although this course is subsidised by the School, please note that there will be a cost to students in the region of GBP410 to attend this field course.

ENV-6030K

20

MODELLING ENVIRONMENTAL PROCESSES

The aim of the module is to show how environmental problems may be solved from the initial problem, to mathematical formulation and numerical solution. Problems will be described conceptually, then defined mathematically, then solved numerically via computer programming. The module consists of lectures on numerical methods and computing practicals (using Matlab); the practicals being designed to illustrate the solution of problems using the methods covered in lectures. The module will guide students through the solution of a model of an environmental process of their own choosing. The skills developed in this module are highly valued by prospective employers.

ENV-6004A

20

Disclaimer

Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. Where this is the case, the University will endeavour to inform students.

Entry Requirements

  • A Level ABB including Geography
  • International Baccalaureate 32 points including HL5 in Geography
  • Scottish Advanced Highers ABB including Geography
  • Irish Leaving Certificate AABBBB or 2 subjects at H1 and 4 subjects at H2 including Geography
  • Access Course Pass the Access to HE Diploma with Distinction in 30 credits at Level 3 and Merit in 15 credits and Level 3
  • European Baccalaureate 80% overall, with at least 70% in Geography

Entry Requirement

You are required to have Mathematics and English Language at a minimum of Grade C or Grade 4 or above at GCSE.

General Studies and Critical Thinking are not accepted.

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including writing, speaking, listening and reading):

  • IELTS : 6.5 overall (minimum 6.0 in any component)

We also accept a number of other English language tests. Please click here to see our full list.

If you do not meet the University's entry requirements, our INTO Language Learning Centre offers a range of university preparation courses to help you develop the English skills necessary for successful undergraduate study.

Interviews

The majority of candidates will not be called for an interview. However, for some students an interview will be requested. These are normally quite informal and generally cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year, believing that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and may wish to contact the appropriate Admissions Office directly to discuss this further.

Intakes

The School's annual intake is in September of each year.

  • A Level ABB including one from Geography, Geology, Maths, Economics, Biology, Chemistry, Environmental Science or Physics. Science A-Levels must include a pass in the practical element.
  • International Baccalaureate 32 points including HL5 in either Geography, Maths, Economics, Biology, Chemistry or Physics and HL5 in one other subject. If no GCSE equivalent is held, offer will include Mathematics and English requirements.
  • Scottish Highers Only accepted in combination with Scottish Advanced Highers.
  • Scottish Advanced Highers BCC including one from Geography, Geology, Maths, Economics, Biology, Chemistry, Environmental Science or Physics. A combination of Advanced Highers and Highers may be acceptable.
  • Irish Leaving Certificate AABBBB or 2 subjects at H1 and 4 at H2 including one from Geography, Geology, Maths, Economics, Biology, Chemistry, Environmental Science or Physics.
  • Access Course Pass the Access to HE Diploma with Distinction in 30 credits at Level 3 and Merit in 15 credits at Level 3, including 12 Level 3 credits in either Geography, Geology, Maths, Economics, Biology, Chemistry, Environmental Science or Physics.
  • BTEC DDM in a related subject. Applied Science or Applied Science (Medical Science) preferred. Excluding Public Services on its own. BTEC and A-level combinations are considered - please contact us.
  • European Baccalaureate Overall 75% with 70% in one from Geography, Geology, Maths, Economics, Biology, Chemistry, Environmental Science or Physics

Entry Requirement

GCSE Requirements:  GCSE English Language grade 4 and GCSE Mathematics grade 4 or GCSE English Language grade C and GCSE Mathematics grade C.  

General Studies and Critical Thinking are not accepted.  

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including speaking, listening, reading and writing) at the following level:

  • IELTS: 6.5 overall (minimum 6.0 in any component)

We will also accept a number of other English language qualifications. Review our English Language Equivalences here.

INTO University of East Anglia 

If you do not yet meet the English language requirements for this course, INTO UEA offer a variety of English language programmes which are designed to help you develop the English skills necessary for successful undergraduate study:

Interviews

The majority of candidates will not be called for an interview. However, for some students an interview will be requested. These are normally quite informal and generally cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year, believing that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and may wish to contact the appropriate Admissions Office directly to discuss this further.

Intakes

The School's annual intake is in September of each year.

Alternative Qualifications

We encourage you to apply if you have alternative qualifications equivalent to our stated entry requirement. Please contact us for further information.

Fees and Funding

Undergraduate University Fees and Financial Support

Tuition Fees

Information on tuition fees can be found here:

UK students

EU Students

Overseas Students

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. 

The University of East Anglia offers a range of Scholarships; please click the link for eligibility, details of how to apply and closing dates.

How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The system allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it must be sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The UCAS code name and number for the University of East Anglia is EANGL E14.

Further Information

If you would like to discuss your individual circumstances with the Admissions Service prior to applying please do contact us:

Undergraduate Admissions Service
Tel: +44 (0)1603 591515
Email: admissions@uea.ac.uk

Please click here to register your details via our Online Enquiry Form.

International candidates are also actively encouraged to access the University's International section of our website.

    Next Steps

    We can’t wait to hear from you. Just pop any questions about this course into the form below and our enquiries team will answer as soon as they can.

    Admissions enquiries:
    admissions@uea.ac.uk or
    telephone +44 (0)1603 591515