BSc Chemistry

Full Time
Degree of Bachelor of Science

UCAS Course Code
A-Level typical
BBB (2017/8 entry) See All Requirements
Visit Us


What happens when you get in the way of irresistible attraction?

Read It

Key facts

(Guardian, 2016)


The School of Chemistry prides itself on research excellence across its spectrum of activities, from synthetic chemistry and drug discovery to spectroscopy and analytical and biophysical chemistry, as confirmed by successive Research Assessment Exercises.

Watch It

Key facts

(2014 Research Excellence Framework)

Our core BSc course gives you the academic training you need to become a professional chemist. You’ll study all aspects of chemistry, developing strong practical and analytical skills whilst building a deep understanding of this central subject. Chemistry at UEA has a prestigious reputation – in the most recent Research Excellence Framework 2014 we ranked 4th in the UK for research outputs. It is this cutting-edge research in chemical sciences which underpins the teaching of the course, ensuring your learning is at the forefront of scientific thought.

Accredited by the Royal Society of Chemistry, this world-class course provides you with an advanced knowledge of chemistry. You will benefit from substantial laboratory-based teaching which will develop your practical skills. In the final years of your degree, you will tailor your study to specialise in the areas which reflect your interests and career aspirations and undertake an individual research project.


The BSc Chemistry is one of our most popular courses and is our most flexible three year degree programme. It is ideally suited to those wishing to study a more broadly-based chemistry degree, as you will be able to define your own learning programme by choosing from the broad range of modules offered by the School of Chemistry.

Making a choice between an MChem or BSc course can be difficult. If you are at all unsure which course is right for you then you need not worry; you will be given advice before you begin studying with and whilst you are a student here. At UEA, transferring between the two courses is straightforward during the first two years because of the universal underlying structure of our courses. Progression is dependent on academic achievement, and it is the grades you achieve during your studies with us that determine whether you are eligible to transfer between courses, not your A-level grades.

Course Structure

This three year degree programme enables you to develop your A Level knowledge of chemistry towards a detailed understanding of chemistry across a broad range of specialisms.

Year 1
During the first year of study you will develop your scientific skills - building upon your A level knowledge. You will study topics such as mathematics and physics, which is particularly beneficial for those who have not taken A-levels in these subjects.

There is also a distinct emphasis on practical work, and you are encouraged to develop important analytical and problem solving skills, which will prove invaluable throughout your degree.

Year 2
During your second year you will study subjects relating to organic and physical chemistry. You will also examine molecular structure and energy levels, developing your knowledge of the core areas of chemistry and honing your practical skills.

Year 3
The third year will offer you a detailed understanding of more advanced organic, inorganic and physical chemistry. You choose from a diverse range of optional modules covering analytical, theoretical and material chemistry, alongside a number which focus on biophysical and medicinal chemistry. You will also undertake a research project, which can be literary, computational or laboratory based.

Modules helping you to develop transferable skills required of professional scientists by employers are also available throughout the course, teaching communication, team working and problem solving skills. There are also modules available for those wishing to develop their mathematical skills.


A variety of assessment methods are employed across our modules, ranging from 100% coursework to 100% examination. Coursework assessment methods include literature reviews, essays, course tests, problem sheets, laboratory reports, and seminar presentations. Skills-based modules are assessed by 100% coursework.

Course Modules

Students must study the following modules for 100 credits:

Name Code Credits


After an introduction to chemical bonding (taught jointly with CHE-4101Y), atomic and molecular structure and chemical principles, this module will provide an introduction to the structures, properties and reactivities of molecules and ionic solids. The latter part of the course will concentrate more on fundamental aspects of inorganic chemistry. Emphasis will be placed on the relationships between chemical bonding and the structures and properties of molecules. This module is the prerequisite for the 2nd year inorganic module CHE-5301B. The first few lectures of this module are integrated with CHE-4101Y. The course is supported and illustrated by the bonding, structrure and periodicity experiments of the first year practical modules, CHE-4001Y and CHE-4602Y.




This is a laboratory based module covering experimental aspects of the "core" chemistry courses CHE-4101Y (Chemistry of Carbon-based Compounds CCC), CHE-4301Y (Bonding, Structure and Periodicity BSP) and CHE-4202Y (Light, Atoms and Materials LAM). A component on Analytical Chemistry is also included. The use of spreadsheets for analyzing and presenting data is covered in the LAM section of the course.




After a shared introduction to atomic structure and periodicity (taught jointly with CHE-4301Y), 4101Y introduces the concepts of # and # bonding and hybridisation, conjugation and aromaticity, the mechanistic description of organic reactions, the organic functional groups, the shapes of molecules and the stereochemistry of reactions (enantiomers and diastereoisomers, SN1/SN2 and E1/E2 reactions, and epoxidation and 1,2-difunctionalisation of alkenes). These principles are then elucidated in a series of topics: Enolate, Claisen, Mannich reactions, and the Strecker amino acid synthesis; the electrophilic substitution reactions of aromatic compounds, and the addition reactions of alkenes, and the chemistry of polar multiple bonds. Organic synthesis and spectroscopy are discussed, with a survey of methods to synthesise alkanes, alkenes, alkynes, alcohols, alkyl halides, ethers, amines and carboxylic acids, and the use of IR, UV and NMR spectroscopy and mass spectrometry to identify the products.




This module introduces students to the major areas of classical physical chemistry: chemical kinetics, chemical thermodynamics, electrolyte solutions and electrochemistry as well as spectroscopy. Chemical kinetics will consider the kinetic theory of gasses and then rate processes, and in particular with the rates of chemical reactions taking place either in the gas phase or in solution. The appropriate theoretical basis for understanding rate measurements will be developed during the course, which will include considerations of the order of reaction, the Arrhenius equation and determination of rate constants. Thermodynamics deals with energy relationships in large assemblies, that is those systems which contain sufficient numbers of molecules for 'bulk' properties to be exhibited and which, are in a state of equilibrium. Properties discussed will include the heat content or enthalpy (H), heat capacity (Cp, Cv), internal energy (U), heat and work. The First Law of Thermodynamics will be introduced and its significance explained in the context of chemical reactions. It is very important that chemists have an understanding of the behaviour of ions in solution, which includes conductivity and ionic mobility. The interaction of radiation with matter is termed spectroscopy. Three main topics will be discussed: (i) ultraviolet/visible (UV / Vis) spectroscopy, in which electrons are moved from one orbital to another orbital; (ii) infrared (vibrational) spectroscopy, a technique which provides chemists with important information on the variety of bond types that a molecule can possess; (iii) nuclear magnetic resonance spectroscopy (NMR), which allow chemists to identify 'molecular skeletons'.




This module will include: Mathematical skills relevant to the understanding of chemical concepts; Statistics as applied to experimental chemistry; Error propagation in physical chemistry and Physical principles through applied mathematics. This part of the module aims to bring students' understanding of mathematical ideas and physics to a sufficient level to study core physical chemistry in later stages. The module also contains a broadly based series of lectures on science, coupled with activities based upon them. The twin objectives for this part of the module are to provide a contextual backdrop for the more focused studies in other concurrent and subsequent degree courses, and to engage students as participants in researching and presenting related information.



Students will select 20 credits from the following modules:

Name Code Credits


History of forensic science, forensic collection and recovery methods, anti-contamination precautions, microscopy, glass refractive index, introduction to pattern recognition including footwear; introduction to Drugs analysis; forensic statistics and QA chain of custody issues. The second half Introduces the student to the fundamentals of DNA and biotechnology essential for an understanding of forensics technologies. Topics covered include: nucleic acid/chromosome structure, replication, mutation and repair; concepts of genetic inheritance; DNA manipulation and visualisation; DNA sequencing; DNA fingerprinting. Teaching and learning methods: lectures, practicals and mentor groups (pbl). Presentation of a case study.




THIS MODULE CANNOT BE TAKEN WITH ENV-4014Y OR ENV-4013Y. This module is designed for students with maths A2 level (grade C or above) or IB SL (grade 4 or above). It is also for students transferring from the SCI Foundation year who have taken MTHB0002B Basic Mathematics II. It covers differentiation, integration, vectors, partial differentiation, ordinary differential equations, further integrals, power series expansions, complex numbers and statistical methods. In addition to the theoretical background there is an emphasis on applied examples. Previous knowledge of calculus is assumed. This module is the first in a series of three maths modules for students across the Faculty of Science that provide a solid undergraduate mathematical training. The follow-on modules are Mathematics for Scientists B and C.




This module gives an introduction to important topics in physics, with particular, but not exclusive, relevance to chemical and molecular physics. Areas covered include optics, electrostatics and magnetism, and special relativity. The module may be taken by any science students who wish to study physics beyond A-Level.



Students must study the following modules for 80 credits:

Name Code Credits


The module describes the structure, bonding and reactivity patterns of inorganic compounds. The aspects covered are set out in the content summary. The module is a prerequisite for the 3rd level inorganic course CHE-6301B. Further details will be provided in the course information booklet.




Quantum mechanics, one of the key scientific ideas of the 20th century, has had a wide impact in chemistry. In the first part of the module you will be introduced to the language and methods of quantum mechanics. In the second part, the close relation between spectroscopic measurements of small molecules and quantum theory will be discussed. Further methods of spectroscopy will then be introduced, beginning with the most widely used of all techniques in structure determination, NMR spectroscopy. This will be followed by a discussion of molecular electronic spectra which are widely used in chemical analysis.




This course builds on CHE - 4101Y (the first year organic chemistry course). Four main topics are covered. The first "Aromaticity" includes benzenoid and hetero-aromatic systems. The second major topic is the organic chemistry of carbonyl compounds. Spectroscopic characterisation of organic compounds is reviewed and the final major topic is "Stereochemistry and Mechanisms". This covers conformational aspects of acyclic and cyclic compounds. Stereoelectronic effects, Neighbouring Group Participation (NGP), Baldwin's rules, Cram's rule and cycloaddition reactions are then discussed.




The module covers a number of areas of modern physical chemistry which are essential to a proper understanding of the behaviour of chemical systems. These include the second Law of thermodynamics and entropy, the thermodynamics of solutions, chemical kinetics, surface chemistry and catalysis. The module includes laboratory work. Due to the laboratory-based content on this module students must have completed at least one level 4 module containing laboratory work.



Students will select 20 credits from the following modules:

Please ensure that your chosen modules from each Option Range do not have the same Sub-Slot code, as this will generate timetable clashes.

Name Code Credits


The module covers the theory and practical application of some key instrumental techniques for chemical analysis. Molecular spectroscopy, chromatography and electroanalytical techniques are the important instrumental methods included. Laboratory practicals using these techniques will reinforce material covered in the lecture programme.




An introduction to the basic principles of polymer synthesis is presented, together with a discussion of their physical properties. Speciality polymers are discussed. Materials chemistry is developed further with the introduction of inorganic structures and the concept of ferroelectric properties together with powder x-ray diffraction as applied to cubic crystals. Ion conductivity and basic band theory are also discussed. Semiconductivity is introduced and related to the band description of these materials. A series of practical experiments in polymer and materials chemistry supports this module and are designed to improve and enhance laboratory skills through experiments, which cover important topics in modern chemistry.



Students will select 20 credits from the following modules:

Name Code Credits


Atmospheric chemistry and global change are in the news: stratospheric ozone depletion, acid rain, greenhouse gases, and global scale air pollution are among the most significant environmental problems of our age. Chemical composition and transformations underlie these issues, and drive many important atmospheric processes. This module covers the fundamental chemical principles and processes in the atmosphere from the Earth's surface to the stratosphere, and considers current issues of atmospheric chemical change through a series of lectures, problem-solving classes, seminars, experimental and computing labs and a field trip to UEA's own atmospheric observatory in Weybourne/North Norfolk. A solid background in chemistry, physics or maths is recommended.




This module explores the structural, kinetic and thermodynamic properties of biological systems and the methodologies used to define them. Using predominantly examples from protein biochemistry, these topics will be discussed within three major themes: 1) Binding, activation and transfer in biological systems, 2) Enzyme catalysis, and 3) Macromolecular size, shape and structure determination. The concluding lectures will explore protein disorder, folding and structure to illustrate how biophysicists integrate concepts and methods from each of these themes when addressing a specific research topic.




Following on from CHE-4701Y, where the emphasis was on collection of evidence, this module introduces more in-depth forensic chemistry, looking at the way evidence gathered at a crime scene may be analysed in the laboratory. The module will deepen the knowledge of forensic statistics and cover basic detection and recovery techniques for body fluids; dna analysis; fingerprint development and recovery; advanced microscopy and spectroscopy and their application to fibres including the theory and practical application of infra-red and raman spectroscopy, paint and other particulates; the use of elemental analysis in forensic science including atomic absorption spectroscopy; and questioned document examination including counterfeiting.




This module is the second in a series of three mathematical modules for students across the Faculty of Science. It covers vector calculus (used in the study of vector fields in subjects such as fluid dynamics and electromagnetism), time series and spectral analysis (a highly adaptable and useful mathematical technique in many science fields, including data analysis), and fluid dynamics (which has applications to the circulation of the atmosphere, ocean, interior of the Earth, chemical engineering, and biology). There is a continuing emphasis on applied examples.




This module introduces medicinal chemistry using chemical principles established during the first year. The series of lectures covers a wide range of topics central to medicinal chemistry. Topics discussed include an Introduction to Drug Development, Proteins as Drug Targets, Revision Organic Chemistry, Targeting DNA with Antitumour Drugs, Targeting DNA-Associated Processes, Fatty Acid and Polyketide Natural Products.




This course covers the foundation and basics of quantum theory and symmetry, starting with features of the quantum world and including elements of quantum chemistry, group theory, computer-based methods for calculating molecular wavefunctions, quantum information, and the quantum nature of light. The subject matter paves the way for applications to a variety of chemical and physical systems - in particular, processes and properties involving the electronic structure of atoms and molecules.



Students must study the following modules for 60 credits:

Name Code Credits


This module concentrates on two important themes in contemporary inorganic chemistry: (i) the role of transition metals in homogeneous catalysis (ii) the correlation between the structures of transition metal complexes and their physical properties, specifically electronic and magnetic properties. The structure and bonding in these compounds will be discussed as well as applications in materials chemistry and synthesis. There will be a series of problem-solving workshops interspersed with the lectures. As each of the three lecturers completes their material, there will be a formative course test of short questions in exam format.




This module covers several key topics required to plan the synthesis of organic compounds, and to understand the properties displayed by organic compounds. The first topic is on synthesis planning, strategy and analysis, supported by a study of further important oxidation and reduction reactions. The second topic is on the synthesis of chiral non-racemic compounds, and describes the use of chiral pool compounds and methods for the amplification of chiral information. The third topic is on the use of organometallic compounds in synthesis with a particular emphasis on the use of transition metal based catalysts. The fourth topic is on the various types of pericyclic reactions and understanding the stereochemistry displayed by an analysis of frontier orbitals. The final topic is on physical organic chemistry and includes aspects of radical chemistry.




The module covers fundamental material in Physical Chemistry including statistical thermodynamics, plus specialist topics such as lasers and photochemistry, diffraction methods, interfacial kinetics and dynamic electrochemistry.



Students will select 60 credits from the following modules:

One of CHE-6001Y or CHE-6002Y MUST be taken (ie is Compulsory). Students who achieve a year aggregate of at least 50% in Year 2 are expected to take CHE-6001Y, those who do not achieve 50% must take CHE-6002Y.Students can only chose a maximum of one Level 5 module in year 3.

Name Code Credits


The module will consist of topics covering important areas of modern physical chemistry and chemical physics. The material will blend together experimental and theoretical aspects of photonics, condensed phase dynamics in molecular and macromolecular fluids and quantum and classical simulations.




This module is designed to provide students with an understanding of the developing landscape and challenges in the broad area of energy generation and transduction. It has a particular emphasis on the science that underpins emerging technologies related to the hydrogen economy, photovoltaics and biological or solar fuels. Necessarily it encompasses cross-discipline aspects of chemistry, physics materials and biological science with the students gaining knowledge of how these disciplines interplay in the design and construction of new devices for energy harvesting and utilisation.




Following on from CHE-4701Y, where the emphasis was on collection of evidence, this module introduces more in-depth forensic chemistry, looking at the way evidence gathered at a crime scene may be analysed in the laboratory. The module will deepen the knowledge of forensic statistics and cover basic detection and recovery techniques for body fluids; dna analysis; fingerprint development and recovery; advanced microscopy and spectroscopy and their application to fibres including the theory and practical application of infra-red and raman spectroscopy, paint and other particulates; the use of elemental analysis in forensic science including atomic absorption spectroscopy; and questioned document examination including counterfeiting.




In the first semester, the module contains introductory lectures on the diverse aspects of mass spectrometry in inorganic and organic chemistry from routine benchtop GC/LC-MS to Orbitrap-MS and MC-CC-ICPMS in a forensic chemistry context. It then applies this knowledge in two areas; an introduction to Forensic Toxicology, including drugs of abuse, and to Environmental issues, including provenancing of foodstuffs. The module also re-enforces issues of collection and preservation of evidence through two simulated case exercises dealing with scene examination and collection of evidence. In the second semester the module expands on themes introduced in the first semester and concentrates on developing both the written and oral presentation skills of students. It is based around a simulated case in which the students will need to examine some evidence, place in the context of the case and write an expert witness report. This will culminate in the presentation of live evidence to a simulated court. The module also includes teaching and discussion of more advanced forensic topics such as advanced DNA, firearms and gunshot residues. This module provides a foundation for the advanced forensic topics taught through CHE-7701Y in the final year.




A supervised literature-based project available only to students registered for the BSc programme.




The structural basis of the function of many proteins has been elucidated and this, together with the ready availability of chemical and biochemical techniques for altering proteins in a controlled way, has led to the application of proteins in a wide variety of chemical processes. These include their use as industrial catalysts and medicines, in organic syntheses and in the development of new materials. Central to the module is the link between the structures of proteins and their biochemical and physical properties. Included are discussions of protein structure, and an introduction to the methods employed to determine protein structures by X-ray crystallography. Acknowledging the importance of metal ions to protein function, the chemical principles of protein-metal interactions and spectroscopic techniques for studying protein metal centres are also covered. Relevant methods from bioinformatics and computational biomolecular modelling are introduced as tools for rational protein engineering. In the second half of the module, lectures progress to explain the experimental techniques by which the properties of proteins can be altered, through to the design and production of completely novel proteins and of synthetic protein mimics.




This course covers the foundation and basics of quantum theory and symmetry, starting with features of the quantum world and including elements of quantum chemistry, group theory, computer-based methods for calculating molecular wavefunctions, quantum information, and the quantum nature of light. The subject matter paves the way for applications to a variety of chemical and physical systems - in particular, processes and properties involving the electronic structure of atoms and molecules.




A supervised research project available only to students registered for the BSc programme.




What do you know about the drivers of climate change? Carbon dioxide (CO2) is the greenhouse gas that has, by far, the greatest impact on climate change, but how carbon cycles through the Earth is complex and not fully understood. Predicting future climate or defining 'dangerous' climate change is challenging, in large part because of this complexity. In this module you will learn about the atmosphere, ocean and land components of the carbon cycle. We cover urgent global issues such as ocean acidification and how to get off our fossil fuel 'addiction'. The complexity of the carbon cycle leads to a truly inter-disciplinary module, incorporating elements of chemistry, ecology, physics, mathematics and geography. We also consider several human dimensions such as: how to 'decarbonise' the UK; geoengineering the climate; how to deal with climate denialists; how to verify greenhouse gas emissions; and the policy relevance of the carbon cycle. The understanding of the carbon cycle gained from this module is an important foundation for all climate change studies. Emphasis is given to the most recent, cutting-edge research in the field.




The aim of this module is to provide an overview of important classes of organic natural product and pharmaceutical compounds. The biosynthetic origins and or the natural product synthesis of some of these entities are also, in some cases, explained in terms of classic organic chemistry, arrow pushing, all of which is presented alongside the properties of perinent examples. The module examines examples of biogenesis, chemical synthesis as well as the biological action of selected natural products and pharmaceutically active compounds. More specifically the chemistry associated with natural products that contain important bioactive motifs will be discussed. The roles of coenzymes in the mevalonate and methylerythritol pathways that generate the "isoprene" building blocks for terpenes and steroids, are outlined as well as the significance of substrate folding in the action of terpene synthases and the enzymes that produce steroids. The historical development and applications of multicomponent reactions as well as the use of microfluidics (flow and continuous), microwave and biphasic chemical synthesis. Finally target molecule synthesis associated with natural product synthesis and the chemistry associated with organosulfur, organosilicon and organoselenium chemistry is discussed in the context of natural product synthesis.




Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. Where this is the case, the University will endeavour to inform students.

Entry Requirements

  • A Level BBB including Chemistry. Science A levels must include a pass in the practical element.
  • International Baccalaureate 31 points to include HL Chemistry at grade 5
  • Scottish Advanced Highers BBB including Advanced Higher Level Chemistry
  • Irish Leaving Certificate BBBBBB or 6 subjects at H2 including Chemistry
  • Access Course Pass Access to HE Diploma with Merit in 45 credits at Level 3, including 12 credits of Chemistry and 12 credits of a second science/Mathematics.
  • BTEC DDM in a science related subject
  • European Baccalaureate Overall 70% with at least 70% in Chemistry

Entry Requirement


All applicants are required to have A level Chemistry. All science A levels must include a pass in the practical element.

General Studies and Critical Thinking are not accepted.

You are required to have English Language at a minimum of Grade C or Grade 4 or above and Mathematics at Grade B or Grade 5 or above at GCSE Level.

Applicants with Access or BTEC qualifications who receive an offer will also be asked to complete a chemistry test at the University during the Summer. Information concerning the content of the chemistry test will be made available to such applicants.

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including writing, speaking, listening and reading):

  • IELTS: 6.5 overall (minimum 6.0 in any component)

We also accept a number of other English language tests. Please click here to see our full list.

INTO University of East Anglia 

If you do not meet the academic and or English requirements for direct entry our partner, INTO University of East Anglia offers guaranteed progression on to this undergraduate degree upon successful completion of a preparation programme. Depending on your interests, and your qualifications you can take a variety of routes to this degree:

International Foundation in General Science FS1

International Foundation in Pharmacy, Biomedicine and Health FS2 


The majority of candidates will not be called for an interview and a decision will be made via UCAS Track. However, for some students an interview will be requested. You may be called for an interview to help the School of Study, and you, understand if the course is the right choice for you. 

The interview will cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.  Where an interview is required the Admissions Service will contact you directly to arrange a convenient time.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year.  We believe that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and to contact directly to discuss this further.


The School's annual intake is in September of each year.

Fees and Funding

Undergraduate University Fees and Financial Support: Home and EU Students

Tuition Fees

Please see our webpage for further information on the current amount of tuition fees payable for Home and EU students and for details of the support available.

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. 

Home/EU - The University of East Anglia offers a range of Bursaries and Scholarships.  To check if you are eligible please visit 


Undergraduate University Fees and Financial Support: International Students

Tuition Fees

Please see our webpage for further information on the current amount of tuition fees payable for International Students.


We offer a range of Scholarships for International Students – please see our website for further information.


How to Apply

How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The system allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it must be sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The UCAS code name and number for the University of East Anglia is EANGL E14.

Further Information

If you would like to discuss your individual circumstances with the Admissions Office prior to applying please do contact us:

Undergraduate Admissions Office

Tel: +44 (0)1603 591515

Sign up for myUEA to...

  • request a copy of our latest prospectus and subject brochures
  • get access to exclusive information personalised to your interests
  • keep up to date with news and events at UEA.

International candidates are also actively encouraged to access the University's International webpages.

    Next Steps

    We already know that your university experience will be life-changing, wherever you decide to go. At UEA, we also want to make that experience brilliant, in every way. Explore these pages to see exactly how we do this…

    We can’t wait to hear from you. Just pop any questions about this course into the form below and our enquiries team will answer as soon as they can.

    Admissions enquiries: or
    telephone +44 (0)1603 591515