BSc Biomedicine


The School of Biological Sciences is a vibrant and friendly academic community firmly embedded in the internationally renowned Norwich Research Park. It boasts extensive state-of-the-art research facilities as well as modern teaching laboratories.

Watch It


The world is running out of antibiotics. But we're tapping into a surprising new source.

Read It

Key facts

(2014 Research Excellence Framework)


Knowing how tumours form helps us to break them down. Biologists at UEA have shown how cooperating cancer cells help each other survive by sharing growth factors; understanding this process could lead to new forms of cell therapy that would make breaking down tumours easier.

Read It
Join our internationally renowned School of Biological Science based at the heart of the Norwich Research Park, where 100% of our biological research is recognised as ‘internationally excellent’ (REF 2014).

Our highly flexible Biomedicine course allows you to take advantage of the incredible facilities and expertise across our campus, including the Biomedical Research Centre, Norwich Medical School and the new Bob Champion Research & Education Building, which is home to research into cancer, antibiotic resistance, musculo-skeletal and gastrointestinal disease as well as a unique bio-bank facility to store DNA and tissue samples.

Our school has world class academics and some of the best facilities in the country, including our undergraduate laboratories. The majority of learning will take place in lectures, seminars practical lab classes and problem sessions providing you with invaluable contact time with lecturers, while learning through direct experience.


This course is designed to allow you to develop skills in the medically-related biological sciences. It adopts a multidisciplinary approach, blending the complementary aspects of the biological and chemical sciences relevant to modern medicine.

The study of biomedicine is an active and advancing area of research within the School of Biological Sciences, ensuring the relevance and up-to-date content of our degree course. It has proved to be an extremely popular programme for students who are keen to apply cellular and molecular research techniques to the understanding and treatment of human diseases.

Leading academic researchers carry out much of the teaching, while biomedical scientists and consultants from Norfolk and Norwich University Hospital contribute to the teaching of clinical aspects of the course . Alongside benefitting from the expertise of medical professionals and academics, you will also have access to the incredible facilities across our affiliated institutions, including the Biomedical Research Centre and the Norwich Medical School which is based on campus.

Course Structure

This three-year degree programme introduces you to aspects of biomedicine alongside biochemistry and molecular and cellular biology. You will continue to study core material through compulsory modules, with opportunities to specialise through optional modules in your final year alongside your final year project.

Year 1
During this year you will receive an introduction to many aspects of biomedicine, biochemistry and molecular and cellular biology through compulsory core modules. You will also receive training in essential scientific methods and techniques, such as applied maths and statistics.

Year 2
During your second year you will study a range of core subjects, designed to further the knowledge and skills you developed in your first year; these include Microbiology, Human Physiology, Clinical Genetics and Investigation of Human Disease.

Year 3
During your final year of study, you will have the chance to specialise according to your own interests, with a list of up to ten modules to choose from. As well as developing key skills such as data analysis, you will also undertake a substantial independent research project.

Course Modules 2018/9

Students must study the following modules for 120 credits:

Name Code Credits


Through a series of lectures, seminars, clinical demonstrations, workshops and practical classes, this module aims to (i) develop an understanding of why and how human disease develops, (ii) introduce the laboratory investigation, diagnosis and monitoring of disease, and (iii) provide insights into how novel drugs are translated into the clinic to treat disease.




You will explore the principles of how information is stored in DNA, how it is expressed, copied and repaired, and how DNA is transmitted between generations. You will gain an introduction to fundamental aspects of biochemistry and cell biology. The essential roles played by proteins and enzymes in signalling, transport and metabolism will be considered in terms of their structures. You will discover how living cells are visualised and the nature of the cell's component membranes and organelles.




You will gain an understanding of the key aspects of physical and biological chemistry that underpin the physiology of living systems. You will also gain a basic understanding of a number of physiological processes and functioning of major organ systems of the human body.




The aim of the module is to provide you with a broad range of skills that you will need as biologists and in future employment. You will develop a working knowledge of mathematics and statistics, and skills relating to information retrieval, structuring writing and arguments, data analysis, team work, presenting work verbally and visually and an appreciation of the role of ethics in science.



Students must study the following modules for 120 credits:

Name Code Credits


You will develop further understanding of contemporary biochemistry, especially in relation to mammalian physiology and metabolism. With a particular focus on proteins and their biochemical activities, you will examine their involvement in cellular reactions, bioenergetics and signalling processes.




This module explores the molecular organisation of cells and the regulation of cellular changes, with some emphasis on medical cell biology. Dynamic properties of cell signalling, growth factor function and aspects of cancer biology and immunology. Regulation of the internal cell environment (information flow, cell growth, division and motility), the relationship of the cell to its extracellular matrix and the determination of cell phenotype. Aspects of cell death, developmental biology, mechanisms of tissue renewal and repair. It is suggested that students taking this module should also take Molecular Biology (BIO-5003B) and/or Genetics (BIO-5009A).




This module imparts the theory and practice of clinical genetics. A detailed comprehension of basic genetics will be obtained from lectures provided within BIO-5009A (Genetics). Students undertaking this module will then build on these details to identify how genetics is important in a modern, well-founded clinical setting. An overview of clinical genetics services will deal with aspects ranging from molecular pathology and techniques for DNA analysis through to genetic assessment and genetic counselling. Genetics and molecular biology lie at the heart of biological processes, ranging from cancer biology to evolution.




This module will provide you with an understanding of the themes and principles of physiology and a detailed knowledge of the major human organ systems. An understanding of how disease affects the ability of organ systems to maintain the status quo will be an important part of this course.




This module imparts the theory and practice of laboratory investigation into human disease. A comprehension of how clinical biochemistry data, together with an understanding of disease mechanisms, impacts on diagnosis, treatment and prognosis will be gained. An introduction to modern molecular medicine is followed by examples of the molecular basis of acquired and inherited diseases, their diagnosis and assessment in the clinical laboratory, and disease management. Workshop sessions form an integral part of this module, developing analytical skills based on clinical and other data, supporting concepts introduced in lectures and providing feedback to the students.




A broad module covering all aspects of the biology of microorganisms, providing key knowledge for specialist modules. Detailed description is given about the cell biology of bacteria, fungi and protists together with microbial physiology, genetics and environmental and applied microbiology. The biology of disease-causing microorganisms (bacteria, viruses) and prions is also covered. Practical work provides hands-on experience of important microbiological techniques, and expands on concepts introduced in lectures. The module should appeal to biology students across a wide range of disciplines and interests.



Students must study the following modules for 60 credits:

Name Code Credits


Primarily an alternative to the 'Research Project' module, this module provides you with an introduction to biological research. It provides you an insight into the development of a hypothesis or questions to test, experimental design, and critical analysis. You will develop crucial research and work skills, including group work.




This module will provide an understanding of how to conduct an independent, hypothesis driven research project. Projects involve extensive data collection, either in the laboratory or field, of a particular topic supervised by a member of staff of Biological Sciences or an affiliated institute. Topics are chosen in consultation with the supervisor. The project report is submitted at the end of the Spring Semester. Projects may also be available for suitably qualified year long visiting students registered in Biological Sciences. Students may be moved to BIO-6023Y Biology Research Skills based on Stage 2 results. Some supervisors require particular module enrolment for placement in their laboratory.




You will address the molecular and cellular aberrations that lead to the diseased state. An understanding of the underlying mechanisms is vital to the research and development of drugs that intervene in disease processes. For each disease considered, an overview of tissue pathology will be followed by an analysis of the epidemiological and basic research studies associated with the submission of a drug into clinical trials. An important component will be problem-based discussions of the material covered in each aspect of the module.



Students will select 20 - 60 credits from the following modules:

Name Code Credits


Do you want to learn about the concepts and principles of genetic analysis of cancer? On this module you will learn about the various roles of genes in development, apoptosis, the cell cycle, metastasis and angiogenesis, for example, and discuss the potential for novel therapies. We work closely with experts at the Norfolk and Norwich University Hospital wherever possible, enabling you to gain an in-depth appreciation of cancer as a disease process from both the scientific and clinical viewpoints.




Do you want to learn about the key topics within cell biology and understand how these relate to human diseases? You will learn about the structure and function of cells in health and disease through a combination of practical demonstrations, where you will experience some of the imaging techniques used in the study of Cell Biology. You will also participate in a workshop, where you will learn how to design experiments. This module will provide you with a solid understanding of aspects of cell structure, function and related diseases concerning: ubiquitination; the cytoskeleton; cell division; cell signalling in motility and wound healing; the extracellular matrix; growth factors and proliferation; cell differentiation and adult stem cells and apoptosis.




How do cells receive and react to information from their external environment? What is the molecular basis for how cells respond to external signalling cues and how does this relate to physiological processes? Topics included in this module include cellular signalling by ion channels, G protein-coupled receptors, enzyme-linked receptors; the associated signal transduction mechanisms and relevance to human physiology and disease. The module includes aspects of the molecular basis of cellular signalling, structure-function relationships and pharmacology. You will study the molecular basis of cellular signalling by three principle receptor families, namely ion channels, G protein-coupled receptors and enzyme-linked receptors. You will build on your knowledge of cell biology and human physiology to deepen your understanding of cellular signalling. You will learn through lectures and independent study.




The module provides up-to-date learning in evolutionary medicine and the evolution of disease. The module examines how evolutionary principles illuminate and provide fresh insight into a broad range of contemporary health problems including infectious, chronic and nutritional diseases and disorders. Topics are introduced in a multidisciplinary approach that takes into account the relationship between biology and society. The module covers 4 areas: (i) principles of evolutionary medicine - humans in their evolutionary context; (ii) evolution and non-infectious diseases (cancer, lifestyles, ageing); (iii) evolution and infection (vaccines, antibiotics, pathogens, emerging diseases); (iv) personalised medicine and social context of evolutionary medicine.




This module will provide you with knowledge of the biological analysis of genomes. This will focus on our understanding of genome composition, organisation and evolution, and the global regulation of gene expression. When you have completed this module you will understand contemporary methods that inform us about the biology of genomes.




This module provides a detailed coverage of the biology of selected infectious microorganisms, in the context of host and responses to pathogens. The properties of organs, cells and molecules of the immune system are described, along with the mechanism of antibody diversity generation, and the exploitation of the immune response for vaccine development. Examples of pathogens are used to illustrate major virulence strategies.



Students will select 0 - 20 credits from the following modules:

Name Code Credits


You will study the mechanisms that drive embryonic development, including the signals and signalling pathways that lead to the establishment of the body plan, pattern formation, differentiation and organogenesis. Your lectures will cover different model organisms used in the study of development with a focus on vertebrate systems. The relevance of embryonic development to our understanding of human development and disease is a recurring theme throughout the module, which also covers stem cells and organoids and their role in enhancing our understanding of development and disease, healthy tissue maintenance and drug discovery.




This module provides an overview of the uses of microorganisms in biotechnological principles. It provides training in the basic principles that control microbiological culture growth, the microbial physiology and genetics that underpin the production of bioproducts such as biofuels, bioplastics, antibiotics and food products, as well as the use of micro-organisms in wastewater treatment and bioremediation.



Students will select 0 - 20 credits from the following modules:

Name Code Credits


The module sets out to explain the molecular basis of the often complex catalytic mechanisms of enzymes concentrating particularly on their relevance to and applications in biotechnology and medicine. An extended practical based on the kinetics of a model enzyme, chymotrypsin, helps underpin concepts learnt in the module.




You will gain an understanding of how science is disseminated to the public and explore the theories surrounding learning and communication. You will investigate science as a culture and how this culture interfaces with the public. Examining case studies in a variety of different scientific areas, looking at how information is released in scientific literature and how this is subsequently picked up by the public press will provide you with an understanding of the importance of science communication. You will gain an appreciation of how science information can be used to change public perception and how it can sometimes be misinterpreted. You will also learn practical skills by designing, running and evaluating a public outreach event at a school or in a public area. If you wish to take this module, you will be required to write a statement of selection. These statements will be assessed and students will be allocated to the module accordingly.




Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. In some cases optional modules can have limited places available and so you may be asked to make additional module choices in the event you do not gain a place on your first choice. Where this is the case, the University will endeavour to inform students.

Further Reading

  • UEA Award

    Develop your skills, build a strong CV and focus your extra-curricular activities while studying with our employer-valued UEA award.

    Read it UEA Award
  • University Taster Events

    Come to one of our taster events and experience university life for yourself. Book now.

    Read it University Taster Events

Entry Requirements

  • A Level AAB including Biology/Human Biology and an A-level in a second science subject or Mathematics. Science A-levels must include a pass in the practical element.
  • International Baccalaureate 33 points with HL 6 in two subjects including Biology and another Science or Mathematics. If no GCSE equivalent is held, offer will include Mathematics and English requirements.
  • Scottish Highers Only accepted in combination with Scottish Advanced Highers.
  • Scottish Advanced Highers BBC including Biology. A combination of Advanced Highers and Highers may be acceptable.
  • Irish Leaving Certificate AAAABB or 4 subjects at H1 and 2 at H2 to include Higher Level Biology
  • Access Course Pass the Access to HE Diploma with Distinction in 36 credits at Level 3 and Merit in 9 credits at Level 3, including 12 Level 3 credits in Biology and 12 Level 3 credits in another Science or Mathematics.
  • BTEC DDD in a relevant subject. Excluding Public Services and Forensic Science. Applied Science and Applied Science (Medical Science) preferred. BTEC and A-level combinations are considered - please contact us.
  • European Baccalaureate 80% overall, with at least 75% in Biology

Entry Requirement

GCSE Requirements:  GCSE English Language grade 4 and GCSE Mathematics grade 5 or GCSE English Language grade C and GCSE Mathematics grade B.  

General Studies and Critical Thinking are not accepted.  

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

Applicants with Access or BTEC qualifications who receive an offer will also be asked to complete a chemistry test at the University during the Summer.

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including speaking, listening, reading and writing) at the following level:

  • IELTS: 6.5 overall (minimum 6.0 in any component)

We will also accept a number of other English language qualifications. Please click here for further information.

INTO University of East Anglia 

If you do not meet the academic and/or English language requirements for this course, our partner INTO UEA offers guaranteed progression on to this undergraduate degree upon successful completion of a foundation programme:

INTO UEA also offer a variety of English language programmes which are designed to help you develop the English skills necessary for successful undergraduate study:



The majority of candidates will not be called for an interview. However, for some students an interview will be requested. These are normally quite informal and generally cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year, believing that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and may wish to contact the appropriate Admissions Office directly to discuss this further.


The School's annual intake is in September of each year.

Alternative Qualifications

We encourage you to apply if you have alternative qualifications equivalent to our stated entry requirement. Please contact us for further information.

Fees and Funding

Undergraduate University Fees and Financial Support

Tuition Fees

Information on tuition fees can be found here:

UK students

EU Students

Overseas Students

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. 

The University of East Anglia offers a range of Scholarships; please click the link for eligibility, details of how to apply and closing dates.

How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The system allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it must be sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The UCAS code name and number for the University of East Anglia is EANGL E14.

Further Information

If you would like to discuss your individual circumstances with the Admissions Office prior to applying please do contact us:

Undergraduate Admissions Office (Biological Sciences)
Tel: +44 (0)1603 591515

Please click here to register your details online via our Online Enquiry Form.

International candidates are also actively encouraged to access the University's International section of our website.

    Next Steps

    We can’t wait to hear from you. Just pop any questions about this course into the form below and our enquiries team will answer as soon as they can.

    Admissions enquiries: or
    telephone +44 (0)1603 591515