MPhys Physics

Video

Physics at UEA is a multi-faceted discipline, covering themes as diverse as quantum physics, fluid mechanics, geophysics and chemical physics. Our courses bring together expertise from across the Faculty of Science to deliver exciting, diverse and cutting-edge teaching, backed by pioneering research.

Watch It

Article

Back in the 1950s, when computers could just about play chess, some of the very first physics simulations were run. The scientists who ran them raised fundamental questions that are only just being answered today – using the most advanced computers in the world.

Read It

Article

Scientists at UEA have discovered a new mechanism involved in the creation of paired light particles, which could have significant impact on the study of quantum physics.

Read It

Article

UEA scientists are measuring some of the fastest processes on the planet to determine the effect that light has on proteins in living organisms, and the resulting structural changes that activate genetic switches.

Read It

Article

What’s really happening beneath our feet? Physicists and Environmental Scientists at UEA are using ingenious methods to work out exactly what’s flowing under the Earth’s surface, helping us to better understand earthquakes, volcanoes and the complex engine at the heart of our dynamic planet.

Read It
Physics is the most fundamental science, answering the most far-reaching and fascinating questions we can pose. Study with us and question everything – from the physics of our planet to the quantum universe.

- Study in a multidisciplinary faculty with a thriving research community, specialising in geophysics, fluid mechanics, chemical physics and quantum physics.
- Gain transferable skills highly sought after by employers – from problem-solving and project work, to communication and technical expertise.
- Take advantage of top-class facilities, including spectroscopy and ultrafast laser equipment, high-tech geophysics apparatus and experimental wave tanks.
- Tailor your degree with a huge range of optional modules.

Overview

Physics is concerned with the most fundamental questions about nature and reality. It’s an inspiring subject that teaches both abstract, creative reasoning and practical, applied knowledge – you can investigate the nature of matter and the origins of the Universe, while researching the movement of ocean waves and learning about the mechanics of sound.

The MPhys course gives you an extra year of study over the BSc Physics, so you’ll graduate with a Masters qualification at the end of a single, integrated degree.

Thanks to the diversity and fundamental importance of physics, it’s not only a fascinating discipline but a highly regarded qualification. You’ll learn a huge range of transferable skills – in maths, communication and teamwork – and get the chance to develop practical professional skills in areas like academic research, engineering and computing.

By studying physics at UEA you’ll develop a deep curiosity about the workings of our Universe, gain powerful scientific skills to employ in a huge range of areas, and leave as one of the most employable graduates in the country.

Recognised by the Institute of Physics

The Institute of Physics has granted recognition status to our BSc Physics and MPhys Physics degrees starting 2017.  Recognition status can be awarded by the Institute to degrees which are too new to meet all the criteria for accreditation, but which satisfy the majority of criteria and contain at least 120 credits of core physics content.  Students graduating from a recognised physics degree are eligible to become members of the Institute later in their careers.

Dr Martin Loftus, the Physics Course Director, said “It is great to get such recognition of our new Physics degrees in place just as we embark on this new and exciting venture. We are looking forward to our first cohort of physics students in 2017”.

What you’ll learn

This MPhys combines a fundamental grounding in core physics topics with a range of optional modules in applied fields, culminating in a Masters-level project that will really strengthen your skills as a physicist. The final year will deepen your knowledge of the subject, give you more opportunities to engage in independent research and give you an advanced qualification that can differentiate you in the job market or lead into a research post.

We’ve got a particularly strong research current in environmental sciences and physics, giving you the chance to study modules in solid earth geophysics, meteorology and oceanography at the same time as more pure physics topics like relativity, astrophysics and quantum mechanics.

You can also focus on areas connected to computing and mathematics like electronics, mathematical modelling, fluid dynamics or statistical mechanics, as well as chemistry-based topics like thermodynamics, spectroscopy or chemical physics.

We are an integral partner of the Norwich Research Park, which is also home to the Norfolk and Norwich University Hospital, and four independent world-renowned research institutes – the John Innes Centre, Institute of Food Research, The Sainsbury Laboratory and The Earlham Institute. As well as housing over 40 science and technology based businesses, the Norwich Research Park exposes our students to cutting-edge developments in science.

Find out more about our research at www.uea.ac.uk/brilliant 

Course Structure

This four-year degree introduces you to many of the major themes in physics in your first year, before delivering more advanced teaching in the second and third years that will allow you to specialise in a particular field. The course culminates in a Masters-level research project that gives you the chance to study a specific topic of your choice in real depth.

First Year

Your first year will consist of six compulsory modules that give you a strong grounding in a wide range of topics. You’ll be introduced to key physics concepts, start developing crucial mathematical skills, and learn about some of the scientific fields that these skills can be applied to. Modules cover topics including light, atoms, molecules, spectroscopy, the dynamic planet and astrophysics.

Second Year

The second year enables you to start selecting compulsory modules that suit your interests. You’ll build on what you’ve learnt in the previous year with teaching in intermediate physics topics, mathematics for scientists, quantum mechanics and molecular structure. You’ll also be introduced to physical chemistry and pick from optional modules that cover electronics, oceanography, meteorology, geophysics, special relativity and renewable energy.

Third Year

Your third year is hugely customisable, with a huge range of modules to choose from, although dominated by an independent research project that will enable you to work on a real problem in physics with an expert supervisor. You’ll also receive training in advanced physics topics and laboratory skills.

Fourth Year

The fourth year enables you to complete an advanced individual project that will further develop your independent research skills. Also incorporating a range of advanced taught modules, this year provides you with Masters-level training that will hone your expertise in a specific field and prepare you for a research post or physics-based career.

Course Modules 2018/9

Students must study the following modules for 120 credits:

Name Code Credits

ASTROPHYSICS,ACOUSTICS AND ADDITIONAL SKILLS

This module explores the physics behind the generation and reception of music. It provides an introduction to the fundamental principles of astrophysics, using these to explore a variety of astrophysical phenomena, and introduces the topics of uncertainties, accuracy and ethical behaviour in physics. You'll learn about acoustics, sound measurement and analysis, including more widely applicable concepts such as the behaviour waves and analysis using Fourier series. You will also study aspects of astrophysics including the history of astrophysics, radiation, matter, gravitation, astrophysical measurements, spectroscopy, stars and some aspects of cosmology. You will learn to predict differences between idealised physics and real life situations. You'll also improve your skills in problem solving, written communication, information retrieval, poster design, information technology, numeracy and calculations, time management and organisation.

PHY-4002Y

20

ELECTROMAGNETISM, OPTICS, RELATIVITY AND QUANTUM MECHANICS

This module gives an introduction to important topics in physics, with particular, but not exclusive, relevance to chemical and molecular physics. Areas covered include optics, electrostatics and magnetism, aspect of chemical physics, basic quantum mechanics and special relativity. The module will involve both lectures and workshops, where you will develop analytical thinking and problem solving skills. The module may be taken by any science students who wish to study physics beyond A Level.

PHY-4001Y

20

LIGHT, ATOMS AND MOLECULES

This module will introduce you to the major areas of classical physical chemistry: chemical kinetics, chemical thermodynamics, electrolyte solutions and electrochemistry as well as spectroscopy. Chemical kinetics will consider the kinetic theory of gasses and then rate processes, and in particular with the rates of chemical reactions taking place either in the gas phase or in solution. The appropriate theoretical basis for understanding rate measurements will be developed during the course, which will include considerations of the order of reaction, the Arrhenius equation and determination of rate constants. Thermodynamics deals with energy relationships in large assemblies, that is those systems which contain sufficient numbers of molecules for 'bulk' properties to be exhibited and which, are in a state of equilibrium. Properties that you'll discuss will include the heat content or enthalpy (H), heat capacity (Cp, Cv), internal energy (U), heat and work. The First Law of Thermodynamics will be introduced and its significance explained in the context of chemical reactions. It is very important that chemists have an understanding of the behaviour of ions in solution, which includes conductivity and ionic mobility. The interaction of radiation with matter is termed spectroscopy. You will discuss three main topics: (i) ultraviolet/visible (UV / Vis) spectroscopy, in which electrons are moved from one orbital to another orbital; (ii) infrared (vibrational) spectroscopy, a technique which provides chemists with important information on the variety of bond types that a molecule can possess; (iii) nuclear magnetic resonance spectroscopy (NMR), which allow chemists to identify 'molecular skeletons'.

CHE-4202Y

20

MATHEMATICS FOR SCIENTISTS A

You will cover differentiation, integration, vectors, partial differentiation, ordinary differential equations, further integrals, power series expansions, complex numbers and statistical methods as part of this module. In addition to the theoretical background there is an emphasis on applied examples. Previous knowledge of calculus is assumed. This module is the first in a series of three maths modules for those across the Faculty of Science that provide a solid undergraduate mathematical training. The follow-on modules are Mathematics for Scientists B and C.

ENV-4015Y

20

PROBABILITY AND MECHANICS

This module comprises two parts: andquot;Probabilityandquot; and andquot;Mechanicsandquot; Probability is the study of the chance of events occurring. It has important applications to understanding the likelihood of multiple events happening together and therefore to rational decision-making. In the first part of this module, you will start by studying probability as a measurement of uncertainty, and looking at statistical experiments and Bayes' theorem. You will then consider both discrete and continuous probability distributions and the concept of expectation. Finally you will consider applications of probability, including Markov chains and reliability theory. Newtonian mechanics provides a basic description of how particles and rigid bodies move in response to applied forces. In the second part of the module you will study Newton's laws of motion and how they can be applied to particle dynamics, vibrations, motion in polar coordinates, and conservation laws.

MTHB4007B

20

UNDERSTANDING THE DYNAMIC PLANET

Understanding of natural systems is underpinned by physical laws and processes. You will explore the energy, mechanics, and physical properties of Earth materials and their relevance to environmental science using examples from across the Earth's differing systems. The formation, subsequent evolution and current state of our planet are considered through its structure and behaviour - from the planetary interior to the dynamic surface and into the atmosphere. You will study Plate Tectonics to explain Earth's physiographic features - such as mountain belts and volcanoes - and how the processes of erosion and deposition modify them. The distribution of land masses is tied to global patterns of rock, ice and soil distribution and to atmospheric and ocean circulation. You will also explore geological time - the 4.6 billion year record of changing conditions on the planet - and how geological maps can be used to understand Earth history. This course provides you with an introduction to geological materials - rocks, minerals and sediments - and to geological resources and natural hazards.

ENV-4005A

20

Students must study the following modules for 100 credits:

Name Code Credits

HEAT, ATOMS AND MOLECULES

Exploring fundamental aspects of thermodynamics and condensed matter physics, you'll be introduced to ideas about the electronic structure based on the free-electron Sommerfeld and band theories, along with the concept of phonons and their contribution to the heat capacity of a solid. You'll consider the structure, bonding and properties of solids, in particular electronic conductivity and magnetism, as well as atomic structure and atomic spectroscopy, and Entropy in terms of a macroscopic Carnot cycle and the statistical approach. Two important distributions of particles will be treated; Bose-Einstein and Fermi-Dirac. Changes of state, 1st and 2nd order phase transitions and the Clausius-Clapeyron equation will be described.

PHY-5001Y

20

MATHEMATICS FOR SCIENTISTS B

This module is the second in a series of three mathematical modules for students across the Faculty of Science. You will cover vector calculus (used in the study of vector fields in subjects such as fluid dynamics and electromagnetism), time series and spectral analysis (a highly adaptable and useful mathematical technique in many science fields, including data analysis), and fluid dynamics (which has applications to the circulation of the atmosphere, ocean, interior of the Earth, chemical engineering, and biology). There is a continuing emphasis on applied examples.

MTHB5006A

20

MATHEMATICS FOR SCIENTISTS C

This module is the third in a series of three mathematical units for students across the Faculty of Science. It covers matrix algebra and numerical methods, partial differential equations and solid mechanics. There is a continuing emphasis on applied examples, and the use of numerical computing software (Matlab) is extended with a dedicated programming component. The module is taught by mathematicians with considerable expertise in the use of mathematics in the natural/environmental sciences and is largely designed to equip students with the tools necessary for advanced second and third level modules, particularly those in the physical sciences.

MTHB5007B

20

QUANTUM THEORY AND SYMMETRY

You'll cover the foundation and basics of quantum theory and symmetry, starting with features of the quantum world and including elements of quantum chemistry, group theory, computer-based methods for calculating molecular wavefunctions, quantum information, and the quantum nature of light. The subject matter paves the way for applications to a variety of chemical and physical systems - in particular, processes and properties involving the electronic structure of atoms and molecules.

CHE-5250Y

20

TOPICS AND LABORATORY IN PHYSICS

On this module you'll explore physics as an empirical science through a series of laboratory experiments that probe key concepts and physical laws. The laboratory sessions will be underpinned by associated teaching surrounding the studied phenomena, and will complement topics addressed in other modules in the physics course. Experiments have been chosen to cover a whole range of topics within your lecture courses. Examples include the analysis of circuit behaviour with DC and AC current, diffraction and interference, some aspects of radioactivity and some aspects of magnetic fields. This module also introduces you to the skill of writing for the general public; a skill recommended by professional bodies such as the Institute of Physics.

PHY-5003Y

20

Students will select 20 credits from the following modules:

Name Code Credits

ANALOGUE AND DIGITAL ELECTRONICS

A practical introduction to electronics, this module is structured to consider analogue electronics and digital electronics in turn. Topics you'll cover include passive and active components, including op-amps, transistors, logic gates, flip-flops and registers. Circuits you'll study include amplifiers, oscillators, modulators, combinational and sequential logic and state machines. You'll spend much of your time doing practical work - underpinned by lectures - where you will build prototypes circuits, as well as designing and building Printed Circuit Boards (PCBs).

CMP-5027A

20

APPLIED GEOPHYSICS

What lies beneath our feet? This module addresses this question by exploring how wavefields and potential fields are used in geophysics to image the subsurface on scales of metres to kilometres. You'll study the basic theory, data acquisition and interpretation methods of seismic, electrical, gravity and magnetic surveys. A wide range of applications are covered, including archaeological geophysics, energy resources and geohazards. Highly valued by employers, this module features guest lecturers from industry who explain the latest 'state-of-the-art' applications and give you unique insight into real world situations. Students doing this module are normally expected to have a good mathematical ability, notably in calculus and algebra.

ENV-5004B

20

APPLIED GEOPHYSICS WITH FIELDCOURSE

What lies beneath our feet? This module addresses this question by exploring how wavefields and potential fields are used in geophysics to image the subsurface on scales of metres to kilometres. You'll study the basic theory, data acquisition and interpretation methods of seismic, electrical, gravity and magnetic surveys. A wide range of applications are covered, including archaeological geophysics, energy resources and geohazards. Highly valued by employers, this module features guest lecturers from industry who explain the latest 'state-of-the-art' applications and give you unique insight into real world situations. Students doing this module are normally expected to have a good mathematical ability, notably in calculus and algebra. This module also includes a one-week field course, currently held in the Lake District during Easter break. The cost of attending the field course is heavily subsidised by the School but students enrolling must commit to paying a sum to cover their attendance.

ENV-5005K

20

DYNAMICS AND VIBRATION

You will build on the introductory material from first year engineering mechanics. An appreciation of why dynamics and vibration are important for engineering designers leads to consideration of Single-degree-of-freedom (SDOF) systems, Equation of motion, free vibration analysis, energy methods, natural frequency, undamped and damped systems and loading. Fourier series expansion and modal analysis are applied to vibration concepts: eigenfrequency, resonance, beats, critical, under-critical and overcritical damping, and transfer function. Introduction to multi-degree of freedom (MDOF) systems. Applications to beams and cantilevers. MathCAD will be used to support learning.

ENG-5004B

20

GLOBAL TECTONICS

Processes in the Earth's interior exert a profound influence on all aspects of the Earth's system, and have done so throughout geological time. This module is designed for you to explore all aspects of those processes from the creation and destruction of tectonic plates to the structure of the Earth's interior and the distribution and dissipation of energy within it. This will include: the theory and mechanisms of plate tectonics, the generation of magma and volcanism; the mechanisms behind earthquakes. You will also cover the geological record of this activity, its evolution and impacts on the Earth.

ENV-5018A

20

LOW CARBON ENERGY: SCIENCE AND TECHNOLOGY

This module examines the principles of energy science and technologies including energy generation and conversion, such as renewables, bioenergy and batteries. It provides a systematic and integrated account of the issues in energy resources and conversion. This knowledge is used to make a rational analysis of energy availability, applications and selections from physical, technical and environmental considerations. It also provides students with the opportunity to explore the future of energy provision in greater depth.

ENV-5022B

20

MATHEMATICAL MODELLING

Mathematical modelling is concerned with how to convert real problems, such as those arising in industry or other sciences, into mathematical equations, and then solving them, using the results to better understand, or make predictions about, the original problem. You will look at techniques of mathematical modelling, examining how mathematics can be applied to a variety of real problems and give insight in various areas, including approximation and non-dimensionalising, and discussion of how a mathematical model is created. You will then apply this theory to a variety of models, such as traffic flow, as well as examples of problems arising in industry.

MTHF5032Y

METEOROLOGY I

The weather affects everyone and influences decisions that are made on a daily basis around the world. From whether to hang your washing out on a sunny afternoon, to which route a commercial aircraft takes as it travels across the ocean, weather plays a vital role. With that in mind, what actually causes the weather we experience? In this module you'll learn the fundamentals of the science of meteorology. You'll concentrate on the physical process that allow moisture and radiation to transfer through the atmosphere and how they ultimately influence our weather. The module contains both descriptive and mathematical treatments of radiation balance, thermodynamics, dynamics, boundary layers, weather systems and the water cycle. The module is assessed through a combination of one piece of coursework and an exam, and is designed in a way that allows those with either mathematical or descriptive abilities to do well, although a reasonable mathematical competence is essential, including basic understanding of differentiation and integration.

ENV-5008A

20

OCEAN CIRCULATION

This module gives you an understanding of the physical processes occurring in the basin-scale ocean environment. We will introduce and discuss large scale global ocean circulation, including gyres, boundary currents and the overturning circulation. Major themes include the interaction between ocean and atmosphere, and the forces which drive ocean circulation. You should be familiar with partial differentiation, integration, handling equations and using calculators. Shelf Sea Dynamics is a natural follow-on module and builds on some of the concepts introduced here. We strongly recommend that you also gain oceanographic fieldwork experience by taking the 20-credit biennial Marine Sciences field course.

ENV-5016A

20

PHYSICAL CHEMISTRY I

The module covers a number of areas of modern physical chemistry which are essential to a proper understanding of the behaviour of chemical systems. These include the second law of thermodynamics and entropy, quantum mechanics, the thermodynamics of solutions and chemical kinetics of complex reactions. The module includes laboratory work. Due to the laboratory-based content on this module, you must have completed at least one Level 4 module containing laboratory work.

CHE-5201Y

20

PROGRAMMING FOR NON-SPECIALISTS

The purpose of this module is to give you a solid grounding in the essential features of programming using the Java programming language. The module is designed to meet the needs of the student who has not previously studied programming.

CMP-5020B

20

RENEWABLE ENERGY

This module builds on understanding in wind, tidal and hydroelectric power and introduces theories and principles relating to a variety of renewable energy technologies including solar energy, heat pumps and geothermal sources, fuel cells and the hydrogen economy, biomass energy and anaerobic digestion. You will consider how these various technologies can realistically contribute to the energy mix. You will study the various targets and legislative instruments that are used to control and encourage developments. Another key aspect of the module is the study and application of project management and financial project appraisal techniques in a renewable energy context.

ENG-5002B

20

SHELF SEA DYNAMICS AND COASTAL PROCESSES

The shallow shelf seas that surround the continents are the oceans that we most interact with. They contribute a disproportionate amount to global marine primary production and CO2 drawdown into the ocean, and are important economically through commercial fisheries, offshore oil and gas exploration, and renewable energy developments (e.g. offshore wind farms). You will explore the physical processes that occur in shelf seas and coastal waters, their effect on biological, chemical and sedimentary processes, and how they can be harnessed to generate renewable energy. You will develop new skills during this module that will support careers in the offshore oil and gas industry, renewable energy industry, environmental consultancy, government laboratories (e.g. Cefas) and academia. The level of mathematical ability required to take this module is similar to Ocean Circulation and Meteorology I. You should be familiar with radians, rearranging equations and plotting functions.

ENV-5017B

20

Students must study the following modules for 80 credits:

Name Code Credits

ADVANCED PHYSICS LABORATORY

This module explores concepts in physics through a series of advanced laboratory experiments. The experiments are underpinned by associated teaching in other modules of the Physics course.

PHY-6003Y

20

ADVANCED TOPICS IN PHYSICS

On this module you'll examine a selection of advanced topics in physics. The topics you will study will compliment your other physics modules and examples include the use of Lagrangian Mathematics in physics, pulsars and gravitational waves. Within this module you will also prepare a presentation on an area of physics that interests you.

PHY-6002B

20

NATURAL SCIENCES BSC PROJECT

Compulsory for all Natural Sciences students, this individual research module comprises supervised research in at least one area of science. It may involve research partners across the Norwich Research Park. The project can involve collection of data in the laboratory or in the field, and/or development of a piece of equipment, and/or development of software or a theoretical/numerical model, and/or analysis of pre-existing data from a variety of sources. It must include independent scientific analysis and will be assessed by a written report, a presentation and a web log maintained throughout the project.

NAT-6001Y

40

Students will select 40 credits from the following modules:

Please ensure that your chosen modules from each Option Range do not have the same Sub-Slot code, as this will generate timetable clashes.

Name Code Credits

ANALOGUE AND DIGITAL ELECTRONICS

A practical introduction to electronics, this module is structured to consider analogue electronics and digital electronics in turn. Topics you'll cover include passive and active components, including op-amps, transistors, logic gates, flip-flops and registers. Circuits you'll study include amplifiers, oscillators, modulators, combinational and sequential logic and state machines. You'll spend much of your time doing practical work - underpinned by lectures - where you will build prototypes circuits, as well as designing and building Printed Circuit Boards (PCBs).

CMP-5027A

20

APPLIED GEOPHYSICS

What lies beneath our feet? This module addresses this question by exploring how wavefields and potential fields are used in geophysics to image the subsurface on scales of metres to kilometres. You'll study the basic theory, data acquisition and interpretation methods of seismic, electrical, gravity and magnetic surveys. A wide range of applications are covered, including archaeological geophysics, energy resources and geohazards. Highly valued by employers, this module features guest lecturers from industry who explain the latest 'state-of-the-art' applications and give you unique insight into real world situations. Students doing this module are normally expected to have a good mathematical ability, notably in calculus and algebra.

ENV-5004B

20

APPLIED GEOPHYSICS WITH FIELDCOURSE

What lies beneath our feet? This module addresses this question by exploring how wavefields and potential fields are used in geophysics to image the subsurface on scales of metres to kilometres. You'll study the basic theory, data acquisition and interpretation methods of seismic, electrical, gravity and magnetic surveys. A wide range of applications are covered, including archaeological geophysics, energy resources and geohazards. Highly valued by employers, this module features guest lecturers from industry who explain the latest 'state-of-the-art' applications and give you unique insight into real world situations. Students doing this module are normally expected to have a good mathematical ability, notably in calculus and algebra. This module also includes a one-week field course, currently held in the Lake District during Easter break. The cost of attending the field course is heavily subsidised by the School but students enrolling must commit to paying a sum to cover their attendance.

ENV-5005K

20

CHEMICAL PHYSICS - PHYSICAL CHEMISTRY

You will study topics covering important areas of modern physical chemistry and chemical physics. The material will blend together experimental and theoretical aspects of photonics, condensed phase dynamics in molecular and macromolecular fluids and quantum and classical simulations.

CHE-6250Y

20

CLIMATE SYSTEMS

What sets the mean global temperature of the world? Why are some parts of the world arid whilst others at the same latitudes are humid? This module aims to provide you with an understanding of the processes that determine why the Earth's climate (defined, for example, by temperature and moisture distribution) looks like it does, what the major circulation patterns and climate zones are and how they arise. You will study why the climate changes in time over different timescales, and how we use this knowledge to understand the climate systems of other planets. This module is aimed at you if you wish to further your knowledge of climate, or want a base for any future study of climate change, such as the Meteorology/Oceanography or Climate Change degrees.

ENV-6025B

20

CONTROL SYSTEMS

Control systems are everywhere; automatic control of wind turbines, building management controls, aerospace controls. Understanding control systems is important for all engineers. The module begins with a review of the underlying theory of control utilising Laplace transforms and other techniques. Open and closed loop systems, feedback and stability will be considered. Matlab and other software tools will support your learning. Industrial applications will be introduced using case studies from local companies.

ENG-6007A

20

DYNAMICAL OCEANOGRAPHY

The ocean is an important component of the Earth's climate system. You will cover mathematical modelling of the large-scale ocean circulation and oceanic wave motion. You will build upon the techniques in fluid dynamics and differential equations that you developed in year two. You will then use these techniques to explain some interesting phenomena in the ocean that are relevant to the real world. We begin by examining the effects of rotation on fluid flows. This naturally leads to the important concept of geostrophy, which enables ocean currents to be inferred from measurements of the sea surface height or from vertical profiles of seawater density. Geostrophy also plays a key role in the development of a model for the global scale circulation of abyssal ocean. The role of the wind in driving the ocean will be examined. This enables us to model the large-scale circulation of the ocean including the development of oceanic gyres and strong western boundary currents, such as the Gulf Stream. You will conclude by examining the role of waves, both at the sea surface and internal to the ocean. The differences between wave motion at mid-latitudes and the Equator are examined, as is the roll of the Equator as a wave-guide. The equatorial waves that you will study are intimately linked with the El Nino phenomenon that affects the climate throughout the globe.

MTHE6007B

20

DYNAMICS AND VIBRATION

You will build on the introductory material from first year engineering mechanics. An appreciation of why dynamics and vibration are important for engineering designers leads to consideration of Single-degree-of-freedom (SDOF) systems, Equation of motion, free vibration analysis, energy methods, natural frequency, undamped and damped systems and loading. Fourier series expansion and modal analysis are applied to vibration concepts: eigenfrequency, resonance, beats, critical, under-critical and overcritical damping, and transfer function. Introduction to multi-degree of freedom (MDOF) systems. Applications to beams and cantilevers. MathCAD will be used to support learning.

ENG-5004B

20

ELECTRICITY AND MAGNETISM

The behaviour of electric and magnetic fields is fundamental to many features of life we take for granted yet the underlying equations are surprisingly compact and elegant. We will begin with a historical overview of electrodynamics to see where the governing equations (Maxwell's) come from. We will then use these equations as axioms and apply them to a variety of situations including electro- and magneto-statics problems and then time-dependent problems (eg electromagnetic waves). We shall also consider how the equations change in an electromagnetic media and look at some simple examples.

MTHE6010A

20

ELECTRICITY GENERATION AND DISTRIBUTION

This module is highly practical and will allow you to study how electricity is generated and how it is distributed to users. The first part studies DC and AC electricity and looks at how RLC circuits behave through complex phasor analysis. The second part will give you the chance to study electricity generators, beginning with magnetism and Faraday's Law. Synchronous and asynchronous generators are studied along with application to conventional power stations and to renewable generation (e.g. wind). You'll also look at transformers and transmission lines with a view to distribution of electricity. Voltage conversion methods such as the rectifier, buck and boost converters are examined and finally electricity generation through solar is covered. Your lab classes will build on material from lectures which in turn forms the basis for coursework.

ENG-6001B

20

GEOPHYSICAL HAZARDS

Geophysical hazards such as earthquakes, volcanic eruptions, tsunamis and landslides have significant environmental and societal impacts. This module focuses on the physical basis and analysis of each hazard, their global range of occurrence, probability of occurrence and their local and global impact. You will address matters such as hazard monitoring, modelling and assessment, and consider approaches towards risk mitigation and the reduction of vulnerability (individual and societal), with an emphasis on their practical implementation. Scenarios and probabilities of mega-disasters are also investigated. All the teaching faculty involved have practical experience of supplying professional advice on these hazards (and related risks) in addition to their own research involvement. A basic knowledge of physical science and of mathematics is assumed e.g. use of logs, exponentials, powers, cosines, rearrangement of equations.

ENV-6001B

20

GLOBAL TECTONICS

Processes in the Earth's interior exert a profound influence on all aspects of the Earth's system, and have done so throughout geological time. This module is designed for you to explore all aspects of those processes from the creation and destruction of tectonic plates to the structure of the Earth's interior and the distribution and dissipation of energy within it. This will include: the theory and mechanisms of plate tectonics, the generation of magma and volcanism; the mechanisms behind earthquakes. You will also cover the geological record of this activity, its evolution and impacts on the Earth.

ENV-5018A

20

LOW CARBON ENERGY: SCIENCE AND TECHNOLOGY

This module examines the principles of energy science and technologies including energy generation and conversion, such as renewables, bioenergy and batteries. It provides a systematic and integrated account of the issues in energy resources and conversion. This knowledge is used to make a rational analysis of energy availability, applications and selections from physical, technical and environmental considerations. It also provides students with the opportunity to explore the future of energy provision in greater depth.

ENV-5022B

20

MATHEMATICAL MODELLING

Mathematical modelling is concerned with how to convert real problems, such as those arising in industry or other sciences, into mathematical equations, and then solving them, using the results to better understand, or make predictions about, the original problem. You will look at techniques of mathematical modelling, examining how mathematics can be applied to a variety of real problems and give insight in various areas, including approximation and non-dimensionalising, and discussion of how a mathematical model is created. You will then apply this theory to a variety of models, such as traffic flow, as well as examples of problems arising in industry.

MTHF5032Y

METEOROLOGY I

The weather affects everyone and influences decisions that are made on a daily basis around the world. From whether to hang your washing out on a sunny afternoon, to which route a commercial aircraft takes as it travels across the ocean, weather plays a vital role. With that in mind, what actually causes the weather we experience? In this module you'll learn the fundamentals of the science of meteorology. You'll concentrate on the physical process that allow moisture and radiation to transfer through the atmosphere and how they ultimately influence our weather. The module contains both descriptive and mathematical treatments of radiation balance, thermodynamics, dynamics, boundary layers, weather systems and the water cycle. The module is assessed through a combination of one piece of coursework and an exam, and is designed in a way that allows those with either mathematical or descriptive abilities to do well, although a reasonable mathematical competence is essential, including basic understanding of differentiation and integration.

ENV-5008A

20

MODELLING ENVIRONMENTAL PROCESSES

The aim of the module is to show how environmental problems may be solved from the initial problem, to mathematical formulation and numerical solution. Problems will be described conceptually, then defined mathematically, then solved numerically via computer programming. The module consists of lectures on numerical methods and computing practicals; the practicals being designed to illustrate the solution of problems using the methods covered in lectures. The module will guide students through the solution of a model of an environmental process of their own choosing. The skills developed in this module are highly valued by prospective employers.

ENV-6004A

20

NUCLEAR AND SOLAR ENERGY

This module addresses the technical aspects of nuclear power and solar energy, whilst letting students apply their knowledge from the Engineering Practice module to make ethical decisions incorporating health and safety risk assessments. Successful design of nuclear installations requires a detailed quantitative risk analysis within a regulatory framework that imposes high tolerances. In contrast, the rapid installation of solar panels at domestic scale requires education to ensure smaller companies remain in line with legislation. Although these energies are considered cleaner, it is essential to consider the environmental impact and planning law, as well as changing the societal perception of both.

ENG-6002Y

20

OCEAN CIRCULATION

This module gives you an understanding of the physical processes occurring in the basin-scale ocean environment. We will introduce and discuss large scale global ocean circulation, including gyres, boundary currents and the overturning circulation. Major themes include the interaction between ocean and atmosphere, and the forces which drive ocean circulation. You should be familiar with partial differentiation, integration, handling equations and using calculators. Shelf Sea Dynamics is a natural follow-on module and builds on some of the concepts introduced here. We strongly recommend that you also gain oceanographic fieldwork experience by taking the 20-credit biennial Marine Sciences field course.

ENV-5016A

20

PHYSICAL CHEMISTRY I

The module covers a number of areas of modern physical chemistry which are essential to a proper understanding of the behaviour of chemical systems. These include the second law of thermodynamics and entropy, quantum mechanics, the thermodynamics of solutions and chemical kinetics of complex reactions. The module includes laboratory work. Due to the laboratory-based content on this module, you must have completed at least one Level 4 module containing laboratory work.

CHE-5201Y

20

PHYSICAL CHEMISTRY II

The module covers a selection of advanced topics in Physical Chemistry including statistical thermodynamics, reaction mechanisms and theories of reaction rates, photochemistry, electrochemistry and diffraction techniques.

CHE-6201Y

20

PROGRAMMING FOR NON-SPECIALISTS

The purpose of this module is to give you a solid grounding in the essential features of programming using the Java programming language. The module is designed to meet the needs of the student who has not previously studied programming.

CMP-5020B

20

RENEWABLE ENERGY

This module builds on understanding in wind, tidal and hydroelectric power and introduces theories and principles relating to a variety of renewable energy technologies including solar energy, heat pumps and geothermal sources, fuel cells and the hydrogen economy, biomass energy and anaerobic digestion. You will consider how these various technologies can realistically contribute to the energy mix. You will study the various targets and legislative instruments that are used to control and encourage developments. Another key aspect of the module is the study and application of project management and financial project appraisal techniques in a renewable energy context.

ENG-5002B

20

SCIENCE COMMUNICATION

You will gain an understanding of how science is disseminated to the public and explore the theories surrounding learning and communication. You will investigate science as a culture and how this culture interfaces with the public. Examining case studies in a variety of different scientific areas, looking at how information is released in scientific literature and how this is subsequently picked up by the public press will provide you with an understanding of the importance of science communication. You will gain an appreciation of how science information can be used to change public perception and how it can sometimes be misinterpreted. You will also learn practical skills by designing, running and evaluating a public outreach event at a school or in a public area. If you wish to take this module, you will be required to write a statement of selection. These statements will be assessed and students will be allocated to the module accordingly.

BIO-6018Y

20

SHELF SEA DYNAMICS AND COASTAL PROCESSES

The shallow shelf seas that surround the continents are the oceans that we most interact with. They contribute a disproportionate amount to global marine primary production and CO2 drawdown into the ocean, and are important economically through commercial fisheries, offshore oil and gas exploration, and renewable energy developments (e.g. offshore wind farms). You will explore the physical processes that occur in shelf seas and coastal waters, their effect on biological, chemical and sedimentary processes, and how they can be harnessed to generate renewable energy. You will develop new skills during this module that will support careers in the offshore oil and gas industry, renewable energy industry, environmental consultancy, government laboratories (e.g. Cefas) and academia. The level of mathematical ability required to take this module is similar to Ocean Circulation and Meteorology I. You should be familiar with radians, rearranging equations and plotting functions.

ENV-5017B

20

THE LEARNING AND TEACHING OF MATHEMATICS

This module will introduce you to the study of the teaching and learning of mathematics with a particular focus on secondary and post compulsory level. You'll also explore theories of learning and teaching of mathematical concepts typically included in the secondary and post compulsory curriculum, and study mathematics knowledge for teaching. If you're interested in mathematics teaching as a career or interested in mathematics education as a research discipline, then this module will equip you with the necessary knowledge and skills.

EDUB6014A

20

WAVES

You will gain an introduction to the theory of waves. You will study aspects of linear and nonlinear waves using analytical techniques and Hyperbolic Waves and Water Waves will also be covered. It requires some knowledge of hydrodynamics and multi-variable calculus. The unit is suitable for those with an interest in Applied Mathematics.

MTHE6031A

20

Students must study the following modules for 80 credits:

Name Code Credits

PHYSICS RESEARCH PROJECT

This individual research module is compulsory for all Physics students enrolled in the MPhys course and is only available to Physics students. It comprises supervised research in at least one area of physics. It may involve research partners in other Schools at UEA. The project can involve collection and analysis of data in the laboratory or from a telescope, and/or development of a piece of equipment, and/or development of software or a theoretical/numerical model, and/or analysis of pre-existing data from a variety of sources. It must include independent scientific analysis. It will be assessed by a written report, a presentation, and a web log maintained throughout the project.

PHY-7004Y

60

RESEARCH PROJECTS

PHY-7003B

20

Students will select 40 credits from the following modules:

Please ensure that your chosen modules from each Option Range do not have the same Sub-Slot code, as this will generate timetable clashes.

Name Code Credits

ADVANCED COMPUTATIONAL METHODS

MODULE NOT AVAILABLE UNTIL 2019/20. RESERVED FOR ENGINEERING MASTERS STUDENTS. A number of computational techniques are used in engineering design and practice such as : Computer-Aided Drafting, Computer-Aided Design, Finite Element Analysis, Computer Numerical Control of manufacturing equipment, Computational Fluid Dynamics. In a hands-on approach students will develop a broad awareness and detailed competence in some of these techniques building on material introduced during earlier years of the degree.

ENG-7008A

20

ADVANCED TOPICS IN PHYSICAL AND NANOCHEMISTRY

How big is a nanoparticle? What special properties do nanomaterials possess? Can we monitor chemical reactions with fast laser techniques? These are fundamental questions in this module of advanced topics in nanochemistry and physical chemistry. This module aims to present material that is not necessarily covered in standard textbooks, but rich references will be listed within lecture slides. You'll gain a firm grounding in synthesis methods, characterisation techniques, and concepts in nanoscience and nanotechnology and modern physical chemistry. The module provides M level coverage in selected topics of nanochemistry and physical chemistry and follows on from the respective third-year modules. You'll begin with an overview of the module and introductory to the history and development of the discipline. The material will be presented in two lecture blocks, covering (i) advanced synthesis of nanomaterials and related considerations, functionalisation and characterisations, single molecule methods in biophysical chemistry, and nanoparticles in nanomedicine; (ii) physical chemistry and reaction kinetics, molecular photophysics and spectroscopy. There are two course tests in this module with the first one in nanochemistry at the end of semester 1, and the second in physical chemistry at the beginning of semester 2. A series of seminar-style sessions will be integrated into the teaching programme and all materials presented in this module will be assessed in the final examination.

CHE-7201Y

20

CHEMICAL PHYSICS - PHYSICAL CHEMISTRY (MCHEM)

You will study topics covering important areas of modern physical chemistry and chemical physics. The material will blend together experimental and theoretical aspects of photonics, condensed phase dynamics in molecular and macromolecular fluids and quantum and classical simulations. It will include elements of independent reading on advanced topics to be presented in seminars.

CHE-7250Y

20

CLIMATE CHANGE: PHYSICAL SCIENCE BASIS

Climate change and variability have played major roles in shaping human history, and the prospect of human-caused global warming is a pressing challenge for society. But how and why has climate changed, how do we predict future climate and how do our choices affect future climate? Throughout this module, you will learn how climate science can answer these questions. Discover the approaches, methods and techniques for understanding the history of climate change and for developing climate projections for the next 100 years. You'll also explore the scientific evidence about climate change and where the uncertainties lie. Starting with an introduction to the changing climate and the main themes in current climate research, your study will be structured around three topics. (1) Fundamentals of the changing climate including the Earth's energy balance, causes of climate change and the greenhouse effect. (2) Research methods, consisting of empirical approaches to climate reconstruction (such as tree-ring research), analysis of observational data (focusing on the global temperature record and causes of recent climate change), and an introduction to energy balance models and general circulation models. (3) Climate change and causal mechanisms, concentrating on the period from 1000 CE to the present and climate projections out to 2100 CE. Studying the physical science basis of climate change will enable you to understand what controls our climate, to explain the causes of the changes we have observed, and to interpret projections of future climate change.

ENV-7014A

20

ELECTRICAL ENERGY GENERATION, DISTRIBUTION AND STORAGE

This module is highly practical and will allow you to study how electricity is generated and how it is distributed to users. The first part studies DC and AC electricity and looks at how RLC circuits behave through complex phasor analysis. The second part will give you the opportunity to study electricity generators, beginning with magnetism and Faraday's Law. Synchronous and asynchronous generators will also be studied along with application to conventional power stations and to renewable generation (e.g. wind). You'll also look at transformers and transmission lines with a view to distribution of electricity. Voltage conversion methods such as the rectifier, buck and boost converters are examined and finally electricity generation through solar is covered. Your lab classes will build on material from lectures which in turn forms the basis for coursework.

ENG-7100B

20

MODELLING ENVIRONMENTAL PROCESSES

The aim of the module is to show how environmental problems may be solved from the initial problem, to mathematical formulation and numerical solution. Problems will be described conceptually, then defined mathematically, then solved numerically via computer programming. The module consists of lectures on numerical methods and computing practicals; the practicals being designed to illustrate the solution of problems using the methods covered in lectures. The module will guide students through the solution of a model of an environmental process of their own choosing. The skills developed in this module are highly valued by prospective employers.

ENV-7003A

20

MODERN EMBEDDED TECHNOLOGY

Embedded processors are at the core of a huge range of products such as mobile telephones, cameras, passenger cars, washing machines, DVD players and medical equipment. The embedded market is currently estimated to be worth around 100x the 'desktop' market and is projected to grow exponentially over the next decade. You will consider the design and development of real-time embedded system applications for commercial off the shelf (COTS) processors running real time operating systems (RTOS) such as ARM-RT, uCLinux etc.

CMP-7029B

20

RESEARCH TOPICS IN EARTH SCIENCE

You will engage in Earth science topics at an advanced level and utilise advanced study skills. The module will be strongly research lead and based around your learning. It will involve engagement with appropriate research seminars in the School of Environmental Sciences and directed research on key topics with discussions and seminars. The topics included vary from year to year but they are likely to include topics in sedimentology, palaeoclimate, geological hazards, Earth history, the Earth system. The module will develop your research and communication skills in addition to imparting specialist knowledge. To take this module, you should either be taking MSci in one of the following or already have a BSc degree in Earth Science, Geology, Geophysics, Physical Geography or similar.

ENV-7018A

20

WAVE, TIDAL AND HYDRO ENERGY ENGINEERING

This module studies renewable energy sources that use the energy stored in water to produce electrical energy. An examination is made into the potential energy and kinetic energy stored in water, either implicitly through waves/tide or explicitly in hydro. Devices for energy extraction from waves are examined but an essential focus is on wave forces on structures. Tidal energy extraction devices including barrages, lagoons and tidal stream turbines are also studied. The design and operation of hydroelectric turbines is studied with a particular focus on pipe flow and pipe networks using commercial software.

ENG-7004B

20

WIND ENERGY ENGINEERING

Wind energy is the main provider of renewable energy and the source that is receiving the majority of investment, making its study vital to energy engineering. This module begins by examining the kinetic energy of moving air and the design of wind turbines to extract this energy. Different turbine designs are briefly examined and comparisons made of their effectiveness. Issues regarding placement of wind turbines and practical considerations are discussed and include data collection of wind speeds for possible wind farm sites using optimal spacing of turbines. The focus is on developing Excel skills and Technical Report-writing skills using wind energy as the context.

ENG-7003B

20

Disclaimer

Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. In some cases optional modules can have limited places available and so you may be asked to make additional module choices in the event you do not gain a place on your first choice. Where this is the case, the University will endeavour to inform students.

Further Reading

  • UEA Award

    Develop your skills, build a strong CV and focus your extra-curricular activities while studying with our employer-valued UEA award.

    Read it UEA Award
  • Chemistry and Pharmacy Summer School

    Join us for an exciting two day residential experience to help enhance your UCAS personal statement.

    Read it Chemistry and Pharmacy Summer School
  • OUR STUDENTS

    Hear from Carolina about studying Physics at UEA.

    Read it OUR STUDENTS
  • OUR STUDENTS

    Hear from Adam about studying Physics at UEA.

    Read it OUR STUDENTS

Entry Requirements

  • A Level AAB including Mathematics and Physics
  • International Baccalaureate 33 points including HL 6 in Mathematics and HL 6 in Physics
  • Scottish Advanced Highers AAB including Mathematics and Physics
  • Irish Leaving Certificate AAAABB or 4 subjects at H1, 2 at H2 including Mathematics and Physics
  • Access Course Pass Access to HE Diploma with Merit in 9 credits at Level 3 and Distinction in 36 credits at Level 3 to include 12 credits of Mathematics and 12 credits of Physics
  • European Baccalaureate 80% overall including 80% in Mathematics and Physics

Entry Requirement

You are required to have Mathematics and English Language at a minimum of Grade C or Grade 4 or above at GCSE.

All applicants are required to have A level Mathematics and Physics, or equivalent

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

Interviews

The majority of candidates will not be called for an interview and a decision will be made via UCAS Track. However, for some students an interview will be requested. You may be called for an interview to help the School of Study, and you, understand if the course is the right choice for you. The interview will cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities. Where an interview is required the Admissions Service will contact you directly to arrange a convenient time.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year.  We believe that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and to contact admissions@uea.ac.uk directly to discuss this further.

  • A Level AAB including Mathematics and Physics. Science A-levels must include a pass in the practical element.
  • International Baccalaureate 33 points to include HL 6 in Mathematics and Physics. If no GCSE equivalent is held, offer will include Mathematics and English requirements.
  • Scottish Highers Only accepted in combination with Scottish Advanced Highers.
  • Scottish Advanced Highers BBC to include Mathematics and Physics. A combination of Advanced Highers and Highers may be acceptable.
  • Irish Leaving Certificate AAAABB or 4 subjects at H1 and 2 at H2, to include Higher Level Mathematics and Physics.
  • Access Course Pass the Access to HE Diploma with Distinction in 36 credits at Level 3 and Merit in 9 credits at Level 3, to include 12 credits of Mathematics and 12 credits of Physics. Science pathway required.
  • BTEC Not accepted
  • European Baccalaureate 80% overall to include at least 85% and 70% from Mathematics and Physics

Entry Requirement

GCSE Requirements:  GCSE English Language grade 4 and GCSE Mathematics grade 4 or GCSE English Language grade C and GCSE Mathematics grade C. 

General Studies and Critical Thinking are not accepted.

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

 

Students for whom English is a Foreign language

We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including speaking, listening, reading and writing) at the following level:

  • IELTS: 6.5 overall (minimum 6.0 in any component)

We will also accept a number of other English language qualifications. Please click here for further information.

INTO University of East Anglia 

If you do not meet the academic and/or English language requirements for this course, our partner INTO UEA offers guaranteed progression on to this undergraduate degree upon successful completion of a foundation programme. Depending on your interests and your qualifications you can take a variety of routes to this degree:

INTO UEA also offer a variety of English language programmes which are designed to help you develop the English skills necessary for successful undergraduate study:

Interviews

The majority of candidates will not be called for an interview. However, for some students an interview will be requested. These are normally quite informal and generally cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.

Gap Year

We welcome applications from students who have already taken or intend to take a gap year, believing that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and may wish to contact the appropriate Admissions Office directly to discuss this further.

Intakes

The School's annual intake is in September of each year.

Alternative Qualifications

We encourage you to apply if you have alternative qualifications equivalent to our stated entry requirement. Please contact us for further information.

Fees and Funding

Undergraduate University Fees and Financial Support

Tuition Fees

Information on tuition fees can be found here:

UK students

EU Students

Overseas Students

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. 

The University of East Anglia offers a range of Scholarships; please click the link for eligibility, details of how to apply and closing dates.

How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The system allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it must be sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The UCAS code name and number for the University of East Anglia is EANGL E14.

Further Information

If you would like to discuss your individual circumstances with the Admissions Service prior to applying please do contact us:

Undergraduate Admissions Service
Tel: +44 (0)1603 591515
Email: admissions@uea.ac.uk

Please click here to register your details via our Online Enquiry Form.

International candidates are also actively encouraged to access the University's International section of our website.

    Next Steps

    We can’t wait to hear from you. Just pop any questions about this course into the form below and our enquiries team will answer as soon as they can.

    Admissions enquiries:
    admissions@uea.ac.uk or
    telephone +44 (0)1603 591515